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Abstract—Instead of predicting just one emotion for one activity (e.g., video watching), fine-grained emotion recognition enables more
temporally precise recognition. Previous works on fine-grained emotion recognition require segment-by-segment, fine-grained emotion labels to
train the recognition algorithm. However, experiments to collect these labels are costly and time-consuming compared with only collecting one
emotion label after the user watched that stimulus (i.e., the post-stimuli emotion labels). To recognize emotions at a finer granularity level when
trained with only post-stimuli labels, we propose an emotion recognition algorithm based on Deep Multiple Instance Learning (EDMIL ) using
physiological signals. EDMIL recognizes fine-grained valence and arousal (V-A) labels by identifying which instances represent the post-stimuli
V-A annotated by users after watching the videos. Instead of fully-supervised training, the instances are weakly-supervised by the post-stimuli
labels in the training stage. The V-A of instances are estimated by the instance gains, which indicate the probability of instances to predict the
post-stimuli labels. We tested EDMIL on three different datasets, CASE, MERCA and CEAP-360VR, collected in three different environments:
desktop, mobile and HMD-based Virtual Reality, respectively. Recognition results validated with the fine-grained V-A self-reports show that
for subject-independent 3-class classification (high/neutral/low), EDMIL obtains promising recognition accuracies: 75.63% and 79.73% for V-
A on CASE, 70.51% and 67.62% for V-A on MERCA and 65.04% and 67.05% for V-A on CEAP-360VR. Our ablation study shows that all
components of EDMIL contribute to both the classification and regression tasks. Our experiments also show that (1) compared with fully-
supervised learning, weakly-supervised learning can reduce the problem of overfitting caused by the temporal mismatch between fine-grained
annotations and physiological signals, (2) instance segment lengths between 1-2s result in the highest recognition accuracies and (3) EDMIL
performs best if post-stimuli annotations consist of less than 30% or more than 60% of the entire video watching.

Index Terms—emotion recognition, weakly-supervised learning, deep multiple instance learning, physiological signals, temporal ambiguity
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1 Introduction
Recent years have witnessed a growing number of emotion recog-
nition algorithms [1]–[4] that particularly focus on modeling the
temporal dynamics of emotion states. Recognizing users’ emotion
while they consume different types of media content (e.g., videos,
music, movies) can help content providers better understand users’
emotions towards their products and adjust the content accordingly
[5]. For example, by identifying the moments that trigger negative
emotions (e.g., confusion), the movie directors can improve the
story arch of the narrative for their films and delete or adjust
the scenes which make the audience distracted or confused. This
requires techniques which can recognize emotions at a finer level
of granularity, normally 0.5s to 4s according to prior emotion
duration measures [3], [6], [7]. Compared with recognizing only
one emotion for one video, fine-grained emotion recognition is
temporally more precise as it can capture the time-varying nature
of human emotions [8]–[10]: the emotions of users normally
change continuously while watching videos.

Previous works [4], [10], [11] employ sequential machine
learning algorithms such as Long Short Term Memory (LSTM)
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networks [12] to model the relationship between input signals and
emotion states. However, sequential learning algorithms require
fine-grained emotion labels for training. Here, the emotion labels
and the input signals are required to have the same dimensions
to train the recurrent structure of sequential learning algorithms
[13]. To collect such fine-grained emotion labels (e.g., valence and
arousal), there are typically three kinds of methods: (1) interrupt
users at a fixed frequency for annotation [14], (2) ask users to an-
notate their emotions in real-time while watching videos [9], [15]
or (3) let external observers annotate users’ emotions segment-
by-segment (e.g., using videos of users’ facial expressions [16])
after watching videos [16]–[18]. However each of those methods
has limitations. Requesting users to continuously annotate their
emotions may not be feasible for longer durations (e.g., two
hour film) as it may result in participant fatigue. Continuously
interrupting people to self-report their emotional states can disrupt
users’ tasks [19]. For external observers, some emotional states
are difficult or misleading for them to annotate. For example,
according to the experiments of Song et al. [20] and Abdic et al.
[21], negative valence is often misidentified by external annotators
as positive when users smile because of sarcasm and frustration.
Even if collecting fine-grained emotion labels is possible, the
experiments to collect them are time-consuming and costly [15].
Researchers have to spend extra time and money collecting fine-
grained emotion labels because it is an additional task other than
the data collection experiment (e.g., asking users to (re-)watch
videos).

Given these issues, it is no surprise that a large number of
datasets [22]–[24] that only contain one emotion label annotated
by the user after watching one video stimulus (i.e., the post-
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stimuli labels). Instead of multiple labels for every fine-grained
time segment (instance), there is only one post-stimuli label for
one activity (i.e., one user watches one video). However, according
to the peak-end theory [25], the post-stimuli labels represent only
the most salient (peak) or recent (end) emotion during the video
watching rather than the naturally dynamic and subtle emotional
changes that may occur within it. According to Romeo et al.
[19], this is defined as the problem of temporal ambiguity. When
training machine learning algorithms to recognize fine-grained
emotions using post-stimuli labels, the information on which fine-
grained instances represent the emotion users labeled post-stimuli
is missing. This can lead to overfitting [3], [26], [27] if all the
instances are fully-supervised by the post-stimuli labels.

To overcome the challenge of temporal ambiguity, this pa-
per proposes an emotion recognition algorithm based on Deep
Multiple Instance Learning (EDMIL) using physiological signals.
EDMIL is trained only with post-stimuli emotion labels. However,
it can provide recognition results at a finer (or higher) level of
granularity (every 2s) by identifying which instances represent the
emotion annotated by users after watching videos. The ground
truth labels (i.e., valence and arousal (V-A)) we use are based
on Russell’s Circumplex model [28], which describes emotions
in a continuous 2-dimensional space. Valence indicates users’
positive or negative affectivity. Arousal measures how calm or
excited a user is. Although we use V-A for training, the prediction
of EDMIL can be easily mapped to discrete emotion keywords
(e.g., high valence and high arousal = happy, high valence and
low arousal = relax) [29]. The signals and their fine-grained
segments are viewed as bags and instances, respectively. Instead of
implementing fully-supervised training for all the instances using
post-stimuli labels, the instances are weakly-supervised by the
post-stimuli labels to avoid overfitting. The fine-grained V-A of
instances are then estimated by the instance gains, which represent
the probability for that instance to predict the corresponding bag
label. This work makes the following contributions to Affective
Computing research:

• We propose an end-to-end deep multiple instance learning
framework to identify which instances represent the post-
stimuli V-A in a fine level of granularity using physiological
signals. Our algorithm is tested on three datasets (CASE [15],
MERCA [9] and CEAP-360VR [30]) collected in three en-
vironments (desktop, mobile, and HMD-based Virtual Reality
(VR)). Recognition results show good performance for subject-
independent 3-class (high/neutral/low) classification on all three
datasets: 75.63% and 79.73% for V-A on CASE, 70.51% and
67.62% for V-A on MERCA and 65.04% and 67.05% for V-A
on CEAP-360VR. Our framework enables finding an optimal
trade-off between recognition accuracy and the burden of fine-
grained emotion annotation.

• We test both state-of-the-art weakly-supervised and fully-
supervised machine learning methods and compare their per-
formance with EDMIL. Results show that EDMIL’s recogni-
tion accuracy outperforms both weakly-supervised and fully-
supervised learning methods for fine-grained emotion recogni-
tion. We also find that compared with fully-supervised learning,
weakly supervised learning can reduce overfitting that results
from the temporal mismatch between fine-grained annotations
and input signals.

• We run validation experiments to compare the performance of
EDMIL under different instance lengths and feature extraction

methods. Results show that instance segment lengths between
1-2s result in the highest recognition accuracies (up to 60%
for V-A in all three datasets). Our results also show that
feature extraction using an end-to-end structure can improve
recognition accuracy compared with manual feature extraction
and unsupervised learning feature extraction methods.

2 Related work
In this section, we first review previous works on emotion recog-
nition using physiological signals. We then narrow our scope to
fine-grained emotion recognition and multiple instance learning
based emotion recognition.

2.1 Emotion recognition by physiological signals

Emotion recognition algorithms using physiological signals as
input modalities can be divided into two major categories: model-
specific methods and model-free methods [29]. Model-specific
methods require pre-designed hand-crafted features to classify
emotions from physiological signals. In general, statistical features
from the time-domain (e.g., mean, standard deviation, first differ-
ential [31]–[33] of the signal) and frequency-domain (e.g., mean
of amplitude, mean of absolute value [34], [35], signal FFT [36])
are commonly extracted for recognition. For example, Zhao et al.
[37] extract 223 features from 4 physiological signals to recognize
the valence and arousal of users. Their algorithm, which merges
information from users’ personality using a hypergraph learning
framework, achieves up to 70% accuracy on the ASCERTAIN [38]
dataset. Jimenez et al. select 13 features from PPG (4 in the time
domain, 9 in the frequency domain) and 14 features from GSR
(all in the time domain) to recognize six basic emotions. A simple
k-nearest neighbor (KNN) classifier is used by Aasim et al. [39]
to classify valence and arousal on their newly collected MULtile
SEnsorial media (MULSEmedia) dataset. Similar to the accuracy
from the work of Zhao et al. [37], they achieve 85.18% and
76.54% accuracy for valence and arousal respectively. Although
model-specific methods have been widely used by researchers for
a long time [29], they require researchers to select features based
on empirical experiments [29], [40]. Thus, it is costly with respect
to time and does not guarantee that selected features are optimized,
which limits the generalizability of their algorithms.

The model-free methods use artificial neural networks to learn
the inherent structure between input signals and emotion labels.
Thus, they can automatically extract features from physiological
signals for recognition. Neural networks such as convolutional
neural networks (CNNs) [41], [42] and Long Short-Term Mem-
ory (LSTM) networks [12], [43] are widely used for emotion
recognition and achieve high accuracy. For example, a regularized
deep fusion framework is designed by Zhang et al. [44] to learn
task-specific representations for each physiological signal. Their
experiments show that the method can improve the performance
of subject-independent emotion recognition by 6% compared to
other fusion methods such as single modal classifiers (i.e., SVM,
Decision Tree, and Naive Bayes). However, model-free methods
can easily overfit on the training data when using deep and
sophisticated structures [45]. According to the experiments of
Zhang et al. [3], for the one-dimensional CNN, simply deepening
the network does not result in better performance on the testing set.
Thus, there are still challenges in designing model-free methods
for better generalizability for emotion recognition.
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Our method takes advantage of the model-free methods, which
automatically extract features from physiological signals. Instead
of fully-supervised training, we design a weakly-supervised learn-
ing algorithm to overcome the overfitting problem of model-free
methods.

2.2 Fine-grained emotion recognition

Fine-grained emotion recognition requires algorithms to predict
multiple emotion states by relying on signals within a specific
time interval. This is typically done using two kinds of methods:
regression and classification. Regression methods view the target
emotion states as a continuous sequence and directly calculate
the mapping (regression) from input signals to output emotion
sequences. These methods include sequential learning approaches
such as Long Short Term Memory (LSTM) networks [12], support
vector regression (SVR) [46] and polynomial regression [47].
Classification methods on the other hand first divide the entire
signals into multiple segmentations (instances) and classify the
emotion for each fine-grained instance. For example, Awais et al.
[48] designed an LSTM-based classification method to classify
emotions every 5 seconds. Srinivasan et al. [49] implemented
decision trees on a RaspberryPi device to classify the valence
(positive/negative) of users every 10 seconds. Both the regression
and classification methods need fine-grained emotion labels to
train the recognition algorithm. For classification methods, the
frequency of required ground truth labels is the same as the
frequency of the classification results (e.g., 5s and 10s for [48]
and [49], respectively). For regression methods, the frequency of
required labels is usually the same as the input signals [10], [50].

To collect such fine-grained emotion ground truth labels for
training, previous works either let the users themselves or profes-
sional annotators to annotate emotions at a fine granularity level.
Some researchers developed momentary emotion annotation tools,
such as FEELTrace [51], CASE [52], RCEA [9] and RCEA-360VR
[30] which allow users to input their emotions (e.g., valence and
arousal) in real-time. However, momentary annotation requires
users to multi-task (e.g., watch videos and annotate at the same
time), which poses risks in increasing user mental workload [9],
[53] and is not always feasible if users watch longer videos [19].
For external annotators, it usually requires at least three external
annotators to get a meaningful agreement (e.g., high kappa score)
[16], and this requires extra labeling effort. In addition, hiring
professional annotators can bring extra costs for the data collection
experiment. Such challenges of collecting fine-grained emotion
labels lead to researchers developing datasets such as DEAP [22],
Mahnob-HCI [23] and ASCERTAIN [38] containing only post-
stimuli labels. Taking advantage of these datasets can lower the
cost of developing and training fine-grained emotion recognition
algorithms.

In our work, we propose a fine-grained emotion recognition
algorithm that is trained using only the post-stimuli emotion
labels. Our method enables researchers to build a fine-grained
emotion recognition model without collecting a large amount of
continuously annotated emotion ground truth labels to train the
recognition network.

2.3 Multiple instance learning based emotion recognition

In the paradigm of Multiple Instance Learning (MIL), the input
is a set of bags which are composed of multiple instances. At
the training stage, each bag has a corresponding label while each

instance does not. Thus, not all the instances are labeled the
same as the bag label at the training stage [54], [55]. MIL has
been applied in previous works on emotion recognition using a
variety of data modalities such as images [56], text [57], voice [58]
and physiological signals [19]. For physiological signals, Romeo
et al. [19] evaluated four MIL algorithms (mi-SVM [59], mil-
Boost [60], MI-SVM [59] and EMDD-SVM [61]) for emotion
recognition using physiological signals (without EEG) on DEAP
[22] and Consumer [19] dataset. The two datasets are collected
using golden-standard (for DEAP) and unobtrusive consumer
devices (for Consumer). Their results show that mi-SVM and MI-
SVM achieve the highest recognition accuracies (bag level) on
DEAP dataset, which is 63.6% and 61.1% for valence and arousal,
respectively. The hypothesis of the four methods mentioned above
is that the positive bags are fairly rich in positive instances. Thus,
the negative instances can be easily identified. However, positive
bags can contain only a small fraction of positive instances.
To solve this problem, Bunescu et al. [62] designed Balanced
MIL (sb-MIL) which introduced a balancing constraint between
positive and negative instances to model the sparse positive
instances in different bags. Zhang et al. [63] implemented the
proposed sb-MIL [62] to classify dimensional emotions using
EEG signals. They achieved classification accuracies (bag level)
on DEAP [22] dataset of 74.21% and 77.50% for valence and
arousal, respectively.

The general idea of the MIL algorithms mentioned above is
to identify the instances which contribute to maximize the prob-
ability for predicting the bag labels. However, all these methods
need to manually design loss functions or constraints between
instances and bags [59], [62]. The manually designed functions
or constraints are usually just suitable for one condition (e.g.,
most of the instances are labeled the same as the bag label [59]).
In addition, the previous works mentioned above only recognize
emotions at the bag level, which means they recognize only one
emotion instead of the fine-grained emotion response for each
instance (i.e., instance-level recognition). In the work of Roman et
al. [19], the authors attempt to identify the instances which make
contributions to predicting the bag-level labels. However, since
the two datasets they use do not have fine-grained emotion ground
truth labels, they plan to validate their method for fine-grained
emotion in future work.

Compared with other learning tasks, the special character of
fine-grained emotion recognition using physiological signals is
manifested into two aspects. First of all, most of the existing multi-
instance learning methods [56], [64], [65] for emotion recognition
are designed for 2D images. The purpose of these methods is
to identify an object of interest embedded into the image (also
known as "emotional regions which contain objects and concepts"
according to the definition of Zhao et al. [66]). Thus, the instances
(i.e., small segments of the image) are often aggregated in a dense
spatial space. Strong constraint functions are often implemented to
omit instances which are spatially far away from the region with
the highest probability of an object of interest. For example, in the
work of Rao et al. [56], a linear iterative clustering is used to merge
different regions of interest representing the emotion of images.
Compared with spatial differences of emotions from an image,
the dynamics of emotions are sparsely distributed in the temporal
space: users can have an emotion response with a short duration
(0.5s to 2s) [6], [7]. Thus, we did not implement strong constraints
to filter the instances which have high probability of predicting
the emotions but are not densely aggregated in one temporal
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moment. We use a simple threshold based on the distribution of
the instance gains for identifying which instances correspond to
the post-stimuli emotion labels.

Secondly, compared with learning tasks using other tempo-
ral signals (e.g., video, speech, EEG signals), the physiological
signals we use contain less abundant information for emotion
recognition [19], [67]. This limits the performance of DNN
methods: feature extraction layers with deep structures can easily
overfit or fail to extract meaningful features for recognition [3].
Due to this, we use shallow convolutional layers (5-layers) with
gradually increasing number of filters and lower size kernels for
feature extraction. This character also motivates us to compare
two different types of feature extraction methods in section 5.6
to find out whether the end-to-end deep-network-based feature
extraction is suitable for fine-grained emotion recognition using
physiological signals.

3 Deep MIL based emotion recognition
In this section, we propose a deep multiple instance learning
based emotion recognition algorithm (EDMIL) to identify the post-
stimuli dimensional emotions (i.e., valence and arousal (V-A)) at
a fine granularity level from physiological signals. EDMIL recog-
nizes fine-grained V-A by identifying which instances represent
the post-stimuli emotion labels annotated by users after watching
the videos. In the training stage, EDMIL contains four parts:
(1) Pre-processing: the obtained physiological signals are firstly
filtered and grouped into bags and instances as input for EDMIL.
(2) Feature extraction layers: the grouped signals are then passed
into deep convolutional layers for feature extraction. (3) Multiple
instance learning layers: the extracted features are then input
into multiple instance learning layers to obtain the instance gain
for each instance. The instance gain represents the probability for
each instance to predict the bag label. (4) Fully connected layer:
at last, each instance gain is fully connected with the post-stimuli
emotion labels (i.e., valence or arousal). The training network is
designed to learn the data representation to predict the post-stimuli
emotion labels using the entire signals. The instance gains learned
in part (3) are the matching scores which indicate the probability
that the instance contributes to the prediction of the post-stimuli
emotion label. In the prediction stage (the network has already
been trained and fixed), the obtained signals are first forwarded
from (1) to (3) to get the instance gains. After that, the (5) instance
regularization is used to transfer the instance gains into the V-A
for each instance. The architecture of the algorithm is shown in
Figure 1. When describing and validating EDMIL, we use the
physiological signals as input and specify the application scenario
as video watching.

3.1 Pre-processing

We first pre-process all the physiological signals using different
filters to eliminate the noise and artifacts from the measurement.
The details for this process are described in section 5.1 (implemen-
tation details). Suppose Smn = {sc}Cc=1 is the set of pre-processed
physiological signals for one user m watching one entire video n,
where C is the number (channels) of physiological signals. The
signals are firstly segmented into multiple instances with a fixed
instance L. After the segmentation, the input of the algorithm is
transferred into a bag of instances: B = {bg}G

g=1. G is the number
of samples for training. bg = {xi

g}I
i=1 is the bag g and xi

g is the

instance i in bag g. bg ∈ RL×I×C,xi
g ∈ RI×C, where L and I is the

number of instances in one bag and the length for one instance,
respectively. The goal of EDMIL is to predict the V-A for each
instance. For both the training and prediction stage, only the
ground truth labels for bg are available. The ground truth labels
for xi

g are only used to evaluate the performance of EDMIL.

3.2 Feature extraction layers

The feature extraction layers are designed to learn the deep
features from the physiological signals for recognizing the post-
stimuli labels. The features are extracted from each instance xi

g
independently, which means the feature extraction layers will not
influence the independence between each set of instances (no
features are extracted from multiple instances). This operation
guarantees that each instance has a unique instance gain before
the fully connected layer. Here, three types of feature extraction
methods are implemented for comparison: (1) an end-to-end
feature extraction method using one-dimensional convolutional
neural network (1D-CNN) (deepfeat), (2) an unsupervised feature
extraction method by maximizing the correlation coefficients be-
tween pairwise physiological signals (pcorrfeat) and (3) a manual
feature extraction method using statistical features (manualfeat).
Unless otherwise specified, we use deepfeat as the default feature
extraction method.

Theoretically, the end-to-end model should result in the best
performance as the features are directly connected with the ground
truth labels [68], which means the deep representation is trained
to best recognize these labels. However, according to previous
studies [3], [69], if we train the network using fine-grained emo-
tion labels and fully-supervised learning methods, the end-to-end
model will overfit because of the temporal resolution mismatch
between physiological signals and fine-grained self-reports due
to different interoception levels across individuals [70]. Thus, we
compare these three types of methods to find out whether the end-
to-end, deep feature extraction (deepfeat, section 3.2.1) still has
the problem of overfitting for weakly-supervised learning. Manual
feature extraction methods (manualfeat, section 3.2.3) are widely
used by previous works for emotion recognition [29], [40], [71].
Thus, we choose it as a baseline method for comparison. We
additionally compare deepfeat with an unsupervised feature ex-
traction method (pcorrfeat, section 3.2.2) because it can decrease
overfitting compared with end-to-end models, as shown in prior
work by Zhang et al. [3]. Below, we introduce the details of the
three feature extraction methods.

3.2.1 deepfeat

The deep features (deepfeat) are extracted using a 5-layer 1D-
CNN [72]. The parameters for each convolutional layer are shown
in TABLE 1. We use large (i.e., equals to half of the instance
length) convolutional kernels in the beginning of the network.
Large convolutional kernels commonly result in better recognition
accuracy [73] because they have a large receptive field across
different sampling points in one instance. However, large kernels
can omit the local information and make the network more
difficult to converge [74]. Thus, we follow a classical strategy
that gradually increases the number of kernels and decreases the
size of them when the network goes deeper [75], [76]. At last, we
add a convolutional layer whose size is bigger than the previous
layer to merge the local information learned by small kernels.
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Fig. 1. The architecture of proposed EDMIL

TABLE 1
Architecture of the 1D-CNN to extract deepfeat

layer input size channels kernel size output size
input (I,C) 8 I/2+1* (I,8)
conv1 (I,8) 16 I/3 (I,16)
conv2 (I,16) 32 I/4+1* (I,32)
conv3 (I,32) 64 I/8+1* (I,64)
conv4 (I,64) 128 I/12+1* (I,128)
conv5 (I,128) 128 I/8+1* (I,128)

*We add 1 to some of the kernels to make their size an odd number

After the feature extraction layer, the bag of instances B is
transferred into deep instances D = {dg}G

g=1,dg = { f k
g}K

k=1 where
K = 128 is the dimension of features at the last 1D-CNN layer.

3.2.2 pcorrfeat
The pairwise correlation-based features (pcorrfeat) are extracted
by maximizing the correlation coefficient for every two signals
from users who watch the same video stimuli [69]. The idea
is inspired by the hypothesis that the same stimuli will trigger
relatively similar emotions across physiological responses among
different users [77], [78]. To extract correlation-based features, we
first calculate the covariance (C11 and C22) and cross-covariance
(C12) of the two signals (S1

n,S
2
n) for users who watch the same

video stimuli. After that, we implement the Singular Value De-
composition (SVD) on the equation below:

[U,D,V ] = SVD(V1D1VT
1 ·C12 ·V2D2VT

2 ) (1)

where D1 and D2 are diagonal matrices whose diagonal
elements are the ω biggest non-zero eigenvalues of C11 and
C22, respectively. D1 = diag( 1√

D11
, 1√

D12
, . . . , 1√

D1ω
) and D2 have

the same format. V1 = [V11,V12, . . . ,V1ω ] is composed of the ω

corresponding eigenvectors of [D11,D12, . . . ,D1ω ], respectively.
V2 is calculated using the same method. We then obtain two
linear projections [Ht

1,H
t
2] = [V1D1V T

1 ·U ′,V2D2V T
2 ·V ′], where

U ′ and V ′ consist of the first K columns of U and V , respec-
tively. At last, the correlation-based features of St

1 and St
2 can

be obtained by: F t = [St
1 ·Ht

1,S
t
2 ·Ht

2]. We then implement the

above procedure among all the M stimuli and C signals (pair by
pair). At last, the bag of instances B is transferred into pcorrfeat

P = {pg}G
g=1, pg = { f k

g}K
k=1 where K = ω

C−1
∏
i=2

i is the dimension of

pcorrfeat.

3.2.3 manualfeat
For the manually selected features, we select the features both in
the time and frequency domain. These are widely used features
for physiological signals for the baseline comparison in dataset
and review papers [29], [40], [71] for affective computing. For
the features in the time domain, we choose the mean, standard
variance, average root mean square, mean of the absolute values,
maximum amplitude and average amplitude for the original and
first-order differential of all physiological signals. For the features
in the frequency domain, we choose the mean, maximum and
the magnitude for the Fast Fourier Transform (FFT) [79] of all
physiological signals.

3.3 Multiple instance learning layers

The purpose of the multiple instance learning layers is to model
the probability between an instance and the corresponding post-
stimuli V-A labels [55]. According to the peak-end theory [25],
the post-stimuli labels usually represent the most salient (peak) or
recent (end) V-A within the entire video watching rather than the
fine-grained V-A changes. Thus, only a part of the instances inside
one bag represent the post-stimuli emotion labels. Traditional MIL
algorithms have to make a hypothesis that instances corresponding
to the bag label are densely [59] or sparsely [62] consist of the
bag. Unlike traditional MIL algorithms, we designed two multiple
instance learning layers to automatically learn the instance gains
without a pre-set hypothesis. The multiple instance learning layers
assign each instance a matching score (instance gain) which
maximize the probability to predict the post-stimuli V-A using
the whole bag. That means instances which can better enable the
network to predict the post-stimuli V-A will be assigned higher
instance gains.

The diagram for multiple instance learning layers is shown
in Fig 2. For each bag dg ∈ RL×I×K , a maximum pooling is
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Fig. 2. The diagram for multiple instance layers

implemented at the feature level (at dimension of features K) to
select the biggest features for each time point i. After that, we
activate the features f k

g for instance k as:

ak,g = Ψ(αk,g f k
g +βk,g) (2)

αk,g and βk,g are the weight and bias for the activation opera-
tion respectively. Ψ(·) represents the activation function. Here, we
use a softmax function according to previous works [55], [80]:

Ψ(i) =
ei

Σ je j (3)

The purpose of the activation operation is to (a) normalize the
selected features in the range from 0 to 1 and (b) make it easier for
the network to calculate the gradient during back-propagation. At
last, another max pooling operation is implemented at dimension
of instance length I. After that, we obtain the instance gains Z =
{zg}G

g=1,zg ∈ R1×L with the same dimension of the number of
instances L.

3.4 Fully-connected layer

To build the link between the instance gains and post-stimuli
emotion labels, we put one fully connected layer at the end of
EDMIL. For the multi-class (high/neutral/low V-A) classification
task, we use the softmax in equation 3 as the activation function.
Then we train the network using RMSprop [81] optimizer because
RMSprop can automatically adjust the learning rate for faster
convergence. Since the task is multi-class classification, we use
the categorical cross entropy (Hc) as the loss function for training:

Hc =−
1
n

Σi[yi · lnxi +(1− yi) · ln(xi)] (4)

where x and y are the predicted and true value for the fully-
connected layer, respectively.

The target of the network is to learn the data representation
to predict the post-stimuli emotion labels using the signals for
the whole video watching. Thus, the training for post-stimuli
labels is fully-supervised. However, the information for which
instances can represent the emotion users labeled post-stimuli is
not available during the training stage. The instance gain is only
the probability of whether the instance makes contributions for the
bag to predict the post-stimuli labels. Thus, for each instance, the
training is weakly-supervised.

3.5 Instance regularization

In the prediction stage, when a new user watches a video, their
physiological signals are forwarded from pre-processing (section
3.1) to multiple instance learning layers (section 3.3) to get the

instance gains. After that, the instance regularization is imple-
mented to identify which fine-grained instances are correlated with
the post-stimuli V-A. Since the instance gain only represents the
matching score, we need to obtain the post-stimuli label the user
annotated to know which V-A value these instances match. Thus,
the post-stimuli V-A is also needed in this step, which means the
user needs to input his or her V-A after watching the entire video.
We predict the fine-grained V-A according to both the instance
gain and the annotated V-A after watching the video:

yi =

{
Y, zi > mean(Z)

p, zi <= mean(Z)
(5)

where Z = {zi} is the instance gains. mean(z) is the mean
value of all instance gains in one bag (signals for the user watch
the entire video). yi is the predicted V-A for instance i. Y is the
post-stimuli V-A annotated by the user. p is the baseline V-A (i.e.,
neutral).

4 Datasets
To evaluate the performance of EDMIL, we test it on three
datasets: CASE [15], MERCA [9] and CEAP-360VR [82] col-
lected in three environments: desktop, mobile and HMD-based
Virtual Reality, respectively. EDMIL is an end-to-end weakly-
supervised learning algorithm for modeling the temporal ambi-
guity of emotions. Thus, we choose physiological signals as the
uni-dimensional input for testing the validity of EDMIL according
to previous work on MIL based emotion recognition [19].

All the three datasets we choose contain physiological sig-
nals with fine-grained self-reported valence and arousal. The
fine-grained self-reports are used for validating the accuracy of
EDMIL. In the training and prediction stage, EDMIL does not
need fine-grained self-reports as input information. We evaluate
EDMIL on datasets collected in three different environments to test
whether it can be generalized to different application scenarios.
In addition, the signals are collected using both golden standard
and wearable devices. Evaluating EDMIL on these three datasets
can also test whether it can generalize to different types of
physiological sensors. The details of datasets are described below.

4.1 CASE dataset

Fig. 3. The experimental setup and annotation interface (©[2020] IEEE) for
CASE [15]

The CASE (Continuously Annotated Signals of Emotion)
dataset [15] contains physiological signals from 30 participants
(15m, 15f), aged between 22-37 (M=27.1, SD=3.9). Participants
used a physical joystick (shown in Fig 3) to annotate their valence
and arousal continuously while they watched eight video clips
on a desktop screen. The data collection experiment for CASE
is a 1 (task: watch videos and continuously annotate valence and
arousal) × 4 (video emotions: amusing vs. boring vs. relaxing vs.
scary) within-subject design. Eight video clips (two videos per
emotions, duration M=158.75s and SD = 23.67s) selected from
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movies and documentaries were chosen to elicit the 4 emotions.
The experiment was conducted in an indoor laboratory environ-
ment. Six clinical, golden standard physiological sensors (Elec-
trocardiogram (ECG), Blood Volume Pulse (BVP), Electrodermal
activity (EDA), Respiration (RESP), Skin Temperature (TEMP),
Electromyography (EMG)) were equipped to collect physiological
signals. All sensors were synchronized using a specialized hard-
ware and sampled at 1000Hz (sample size = 2451650 samples ×
30 users). The V-A ratings (sample size = 49033 samples × 30
users) were collected at 20Hz according to the sampling rate of
the physical joystick.

4.2 MERCA dataset

The MERCA [9] (Mobile Emotion Recognition dataset with Con-
tinuous Annotations) dataset contains physiological signals for 20
participants (12m, 8f) aged between 22-32 (M=26.7, SD=2.9).
Users used a virtual joystick (shown in Fig 4) to annotate their
valence and arousal continuously while watching 12 video clips
on a mobile screen (5.5 inch). The data collection experiment for
MERCA is a 1 (task: watch videos and continuously annotate
valence and arousal) × 4 (video emotions: joy vs. fear vs. sad vs.
neutral) within-subject design. The 12 video clips (three videos
per emotion, duration M = 81.4s and SD = 22.5s) were selected
according to 2D emotion annotations from the self-reports in
the MAHNOB-HCI dataset [23]. 10s black screens were added
before and after each video to decrease the effect of emotional
overlapping among different videos.

Empatica E4

Recording device

Displaying
device

time sync

Fig. 4. The experimental setup and annotation interface for MERCA [9]

As shown in Fig 4, the experiment was conducted in an
outdoor campus. Users could walk or stand freely while watching
videos. The experiment setting parallels watching mobile videos
while walking or waiting for a bus or train, which is a common
phenomenon in mobile video consumption [83]–[85]. Participants
were told to watch the videos as they normally would in such
settings. To prevent participants from running into obstacles,
traffic, or other people, the experimenter always accompanied the
participant from a distance to guarantee their safety.

The Empatica E41 wristband was used to collect physiological
signals. Empatica E4 is a non-intrusive and wearable wristband
which is suitable for collecting signals in outside environments.
From Empatica E4, they collected Heart Rate (HR, 1Hz, sample
size: 1326 samples × 20 users), BVP (64Hz, 42432 samples ×
20 users), EDA (4Hz, 5304 samples × 20 users) and TEMP
(4Hz, 5304 samples × 20 users). The collected signals were
stored on a mobile device (i.e., the recording device). As shown
in Figure 4, the E4 wristband were connected to the recording

1. https://www.empatica.com/en-eu/research/e4/

device through low-power bluetooth. Another mobile device (i.e.,
the displaying device) was used for showing the videos and
collecting annotations. MERCA also contains eye movements
from a wearable eyetracker. A noise-cancelling headphone was
connected to the displaying device via bluetooth to play audio.
Timestamps of both devices were set according to the clock of
the recording device, where all data were synchronized via an
NTP server (android.pool.ntp.org). The V-A ratings (sample size
= 13260 samples × 20 users) were collected at 10Hz according
to the sampling rate of the virtual joystick. At the end of video
watching, users were asked to rate their post-stimuli V-A for that
video using the Self-Assessment Manikin (SAM) scale [86].

4.3 CEAP-360VR dataset

The CEAP-360VR [82] (Continuous Physiological and Behavioral
Emotion Annotation Dataset for 360◦ Videos) dataset contains
physiological signals for 32 participants (16m, 16f) aged between
18-33 (M=25, SD=4.0). Similar to CASE and MERCA, a physical
joystick (Joy-Con Controller, shown in Fig 5) was used by users
to annotate their valence and arousal continuously while they were
watching eight 360◦ video clips through an HTC Vive Pro Eye2

Head-Mounted Display (HMD). The data collection experiment is
a 1 (task: watching 360◦ videos and continuously annotate valence
and arousal) × 8 (video emotions: high valence+high arousal vs.
high valence+low arousal vs. low valence+low arousal vs. low
valence+high arousal) within-subjects design. The eight video
clips (two videos per emotions, duration = 60s) were selected
according from the database provided by Li et al. [87], which
contains mean post-stimuli V-A ratings from 95 subjects.

Empatic E4 Mobile phone

HTC VIVE Pro Eye Laptop

c
Fig. 5. The experimental setup and annotation interface for CEAP-360VR
[82]

As shown in Fig 5, the experiment was conducted in a con-
trolled, indoor environment. During the experiment, participants
sat on a swivel chair and were free to look in any direction [30].
The experimental setup parallels the scenario that users watch
360◦ videos using HMD-based VR devices. Similar to MERCA,
the physiological signals of participants were measured through
the Empatica E4 wristband. For Empatica E4, they collect HR
(1Hz, sample size: 360 samples × 32 users), BVP (64Hz, 11520
samples × 32 users), EDA (4Hz, 1440 samples × 32 users) and
TEMP (4Hz, 1440 samples × 32 users). The collected signals
were stored on a mobile device which was connected with E4
using low-power bluetooth. One laptop was used to play the 360◦

videos as well as log the head and eye movement from HTC Vive
Pro Eye. Timestamps of the mobile device were set according
to the clock of the the laptop, synchronized via an NTP server.
The V-A ratings (sample size = 3600 samples × 32 users) were
collected at 10Hz according to the sampling rate of the physical
joystick. After each 360◦ video was played, users were ask to rate
their post-stimuli V-A for that video using a within-VR SAM [86]
rating scale.

2. https://enterprise.vive.com/us/product/vive-pro-eye/

android.pool.ntp.org
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5 Experiments and results

In this section, we first introduce the implementation details of
EDMIL on CASE, MERCA and CEAP-360VR datasets. We then
evaluate the classification and regression performance of EDMIL
using Leave-One-Subject-Out Cross Validation (LOSOCV). After
that, we compare the performance of EDMIL with the state-of-
the-art MIL algorithms which have been applied for emotion
recognition. Then, an ablation study was conducted to verify
the effectiveness of each component. Lastly, we compare the
performance of the three feature extraction methods mentioned
in section 3.2.

5.1 Implementation details

For all three datasets, we choose four physiological signals,
Electrodermal activity (EDA), Blood Volume Pulse (BVP), Skin
Temperature (TEMP) and Heart Rate (HR), as the input signals of
EDMIL. Although EEG signals can provide more abundant infor-
mation according to previous works [29], [88], high-resolution
EEG signals need to be captured under strict laboratory envi-
ronments without any electromagnetic interference [89], which
makes their use limited in an indoor laboratory environment. We
choose these four signals because they can be easily measured by
wearable and unobtrusive sensing devices such as smart watches
or wristband (e.g., Empatica E4 and Microsoft MS Band 3).
In addition, the selected signals contain physiological responses
from both autonomic nervous system (EDA and TEMP) and
cardiovascular system (BVP and HR), which can provide abundant
information for emotion recognition [29], [88]. Moreover, these
four signals have also been widely used by previous work to
recognize valence and arousal [90]–[92]. We first pre-process
the physiological signals using the standard filtering procedure
widely used in previous works [29], [93]–[95]. Firstly, a low pass
filter with a 2Hz cutoff frequency is used to remove noise [93]
from EDA signals. For the BVP signal, we implement a 4-order
butterworth bandpass filter with cutoff frequencies [30, 200] Hz to
eliminate the bursts [94]. At last, an elliptic band-pass filter with
cutoff frequencies [0.005, 0.1] is used to filter TEMP signals [95].

To decrease measurement bias in different sessions, all signals
are normalized to [0,1] using Min-Max scaling normalization:

Sn =
S−min(S)

max(S)−min(S)
(6)

The normalization is implemented on each subject under each
video stimulus (session). Since signals in both MERCA and
CEAP-360VR have different sampling rates, they are interpolated
to 50Hz using linear interpretation [96]. We choose linear inter-
polation because it is the simplest interpolation method which
will not change the distribution of the signals. For CASE dataset,
we downsample the signals also to 50Hz by decimation down-
sampling [97]. The HR for CASE is extracted from ECG using
heartpy library [98]. Then the input signals are segmented into
2 second instances (sample size 100). The choices for different
segmentation lengths are discussed in section 6.2. Since different
sessions have different lengths, we use zero padding according to
previous works [55], [99] to let all sessions (i.e., bags) have the
same length. Since CASE does not collect post-stimuli V-A, we
use the mean of continuous V-A as ground truth to train EDMIL

3. http://developer.microsoftband.com

because the mean V-A has no significant difference between post-
stimuli V-A [9], [30]. Aside from the comparison of different fea-
ture extraction methods (section 5.6), we use deepfeat described
in section 3.2.1 for feature extraction. The network is trained
by RMSprop [81] optimizer since it can automatically adjust the
learning rate for faster convergence. We use the Early-Stopping
[100] technique to terminate training if there is no improvement
on the training loss for 5 epochs.

The time complexity of EDMIL is:

O(
15
64

K2 · I2 ·L2 +
1
32

K ·C · I2 ·L+(
69K2

32
+

K ·C
16

+2) · I ·L+ I)
(7)

L is the number of instances in one bag. I is the number of
sample points for one instance. N = L× I is the sample size of
an input signal. K and C are constants which represent the output
dimension of the feature vectors and the number of signal channels
respectively. Thus, the time complexity can be simplified as:

O(A ·N2 +B ·N +D) (8)

where A, B are coefficients for N2 and N respectively. D is the
constant term of the time complexity. The average training time of
EDMIL is 218.56s, 156.39s and 192.23s for CASE, MERCA and
CEAP-360VR, respectively. EDMIL is implemented using Keras
(python). All our experiments are run on a server with NVIDIA
RTX 2080Ti GPU and 32 GB RAM. The average testing time for
each fine-grained instance is 19.21ms, 18.6ms and 15.34ms for
CASE, MERCA and CEAP-360VR, respectively. That means to
recognize 2s emotions, the algorithm only spends less than 20ms
after the network is trained. The computational cost of EDMIL
is low due to (a) the simple (5-layer) structure for the feature
extraction (b) a simple threshold instead of complex constraint
functions for the instance regularization module.

5.2 Evaluation protocol

To evaluate the performance of EDMIL, we conduct two kinds of
experiments: classification and regression. The classification task
tests the instance-level accuracy while the regression task validates
the overall dynamics throughout one entire video watching. Below,
we introduce the details of the two tasks as well as the metrics and
method we use to validate them.

5.2.1 Classification task

The aim of the classification task is to test whether EDMIL can
recognize high/neutral/low V-A for each instance, which is a stan-
dard validation method in prior works [23], [29], [101]. We use the
mean V-A of instances as ground truth labels for validation. The
mapping from continuous values of V-A to discretized categories
is: [1,3) = Low, [3, 6) = Neutral, [6, 9] = High.

To test the performance of the classification task of EDMIL,
we select three validation metrics:
• accuracy (acc): the percentage of correct predictions;
• confusion matrix: the square matrix that shows the type of

error in a supervised paradigm [19];
• weighted F1-score (w-f1): the harmonic mean of precision

and recall for each label (weighted average by the number of
true instances for each label) [102].

These three metrics are widely used in evaluating machine
learning algorithms [103]. We use weighted F1-score instead of
macro and binary F1-score to take into account label imbalance.
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5.2.2 Regression task
The performance of the classification task can only reflect the
pairwise comparison between the predicted and ground truth labels
for instances, not the overall difference between sequences (i.e.,
the predicted and ground truth V-A throughout one entire video
watching). The purpose of the regression task is to test whether the
instance gains (before instance regularization) learned from post-
stimuli V-A have similar temporal dynamics with fine-grained V-
A ground truth. In addition, as a discretization step, the instance
regularization could bring bias to the classification performance.
The predicted and ground truth V-A may be different but be
discretized into the same category. Thus, the test of regression
task can provide an additional validation of EDMIL.

To compare the performance of regression, we also train
EDMIL with 3-class (low/neutral/high) post-stimuli V-A labels to
get the instance gains. We then skip the instance regularization and
compare the obtained instance gains and fine-grained V-A labels.
Since the instance gains and V-A have different magnitudes, we
also normalize them using min-max scaling normalization. To
evaluate their difference, we use the mean square error (mse) as
the validation metric for the regression task:

mse =
1
M

Σi(yi− xi)
2 (9)

where yi and xi are the ground truth and predicted V-A for
instances respectively. M is the number of instances in one bag.

5.2.3 Evaluation method
We train and test the proposed method using subject-independent
models. The subject-independent model is tested using Leave-
One-Subject-Out Cross Validation (LOSOCV). LOSOCV is a
standard validation method for emotion recognition which can be
used to test the generalizability among different users [22]. Data
from each subject are separated as testing data and the remaining
data from other subjects are used for training. We repeat the
training and testing operation for N times (N is the number of
subjects in one dataset) to make sure the data from all subjects are
used for testing. The results we show are the averaged accuracy,
w-f1 and mse among all subjects used as testing data.

TABLE 2
LOSOCV reuslts for CASE, MERCA and CEAP-360VR

acc w-f1 mse

CASE valence 75.63% 0.72 0.2354
arousal 79.73% 0.77 0.2281

MERCA valence 70.51% 0.69 0.2673
arousal 67.62% 0.65 0.2051

CEAP-360VR valence 65.04% 0.65 0.2384
arousal 67.05% 0.65 0.2529

5.3 Results

The classification and regression performance of EDMIL on
three datasets are shown in Table 2. The accuracies for 3-class
classification for all three datasets are above 65%. The w-f1
scores are also higher or equal to 0.65, which means EDMIL can
provide balanced recognition precision and recall for different V-A
categories. Fig 7 shows the confusion matrices for classification.
For the comparison between different datasets, EDMIL performs

the best on CASE dataset (up to 75% accuracy for V-A). The
recognition accuracies on CEAP-360VR and MERCA are similar
(around 67% for V-A) but lower than the accuracies on CASE. The
results indicate that the mobile and VR environments are more
challenging for fine-grained emotion recognition compared with a
laboratory-based desktop environment. Although the performance
on different datasets are different, they all achieve promising
accuracies (>65%) and w-f1 scores (>0.65). The test results on
different datasets show good generalizability of EDMIL among
different testing environments (desktop, mobile and VR).

Fig 6 shows the accuracy of 3-class classification for each
individual user in the three datasets. From the results we can find
variability of recognition accuracy among different individuals.
The results are coherent with the work of Koelstra et al. [22]
and Romeo et al. [19] that there is high inter-subject variability
of physiological signals which affects the recognition accuracy.
However, the accuracies for more than 75% users (CASE: 93%,
MERCA: 85%, CEAP-360VR: 75% of the users respectively)
are above 60%. Thus, EDMIL achieves balanced performance
on different users, which shows good generalizability of EDMIL
among different subjects.

5.4 Comparison with baselines

The comparison of EDMIL with baseline methods [59], [62],
[104]–[107] is shown in Table 3. We choose four classic multiple
instance learning algorithms which have been widely used as
baseline methods. In the work of Romeo et al. [19], mi-SVM and
MI-SVM [104] achieved the best recognition accuracies (in bag-
level) for emotion recognition using physiological signals. We then
add another two baseline methods, NSK [59] and sb-MIL [62], to
further compare the performance of EDMIL with state-of-the-art
methods. For these four methods, we use the same hand-crafted
features with [19]. In addition to the classic MIL algorithms, we
also select three deep learning based weakly-supervised meth-
ods for comparison (i.e., Attentional Multiple Instance Learning
(AMIL) [105], Weakly Supervised PPG (WSPPG) [106], Weakly
supervised Convolutional Recurrent Neural Network (WCRNN)
[107]). The baselines we choose include some widely used and
more complex machine learning structures (i.e., recurrent structure
[107], attention structure [105], deeper CNN [105], [105]). All
these three baselines use the end-to-end learning structures which
are designed for 1D signal based (voice [105], [107], PPG [106])
learning tasks. Thus, we can directly use them for testing without
manually selecting features like classic MIL baselines. Similar
to EDMIL, we use these seven methods to obtain the instance
gains to compare the regression performance. For the classification
performance, we use the same instance regularization to transfer
the instance gains into fine-grained V-A for all the four baseline
methods.

As shown in Table 3, the performance of EDMIL outperforms
all four classic MIL baseline methods. The results are coherent
with the finding of Romeo et al. [19] that classic MIL algo-
rithms cannot achieve high recognition accuracy using subject-
independent models. The classic MIL algorithms need to make
hypotheses that the instances corresponding to the bag label are
densely (mi-SVM, MI-SVM and NSK) or sparsely (sb-MIL) com-
posed of the bag. However, for fine-grained emotion recognition,
we do not know whether the post-stimuli emotions are the most
salient (only small amount of the instances are correlated with the
post-stimuli label) or overall (most of the instances are correlated
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Fig. 6. The LOSOCV accuracy for individual subject of three datasets

Fig. 7. The confusion matrices for leave-one-subject-out cross validation (3-class classification) on (a) CASE, (b) MERCA and (c) CEAP-360VR

TABLE 3
Comparison with baseline methods

CASE MERCA CEAP
acc w-f1 mse acc w-f1 mse acc w-f1 mse

mi-SVM [104]
valence 53.55% 0.60 0.3856 52.41% 0.46 0.3956 49.79% 0.44 0.3845
arousal 55.45% 0.57 0.3927 54.93% 0.49 0.4012 52.90% 0.47 0.3822

MI-SVM [104]
valence 56.45% 0.53 0.3543 52.41% 0.46 0.3726 50.21% 0.45 0.3733
arousal 59.26% 0.55 0.3862 55.07% 0.48 0.3852 47.10% 0.41 0.3871

NSK [59]
valence 56.45% 0.54 0.3774 47.14% 0.46 0.3845 48.09% 0.45 0.4151
arousal 59.66% 0.55 0.3983 55.07% 0.48 0.4011 49.10% 0.51 0.4169

sb-MIL [62]
valence 57.47% 0.53 0.2873 52.41% 0.46 0.2991 50.21% 0.49 0.2927
arousal 58.66% 0.55 0.2911 47.07% 0.50 0.3012 47.00% 0.47 0.2913

AMIL [105]
valence 66.45% 0.64 0.2451 59.59% 0.51 0.2745 55.87% 0.45 0.2457
arousal 68.57% 0.62 0.2326 58.32% 0.48 0.2677 57.62% 0.48 0.2678

WSPPG [106]
valence 70.26% 0.61 0.2382 65.34% 0.53 0.2734 61.54% 0.51 0.2403
arousal 71.32% 0.62 0.2387 62.51% 0.54 0.2232 63.18% 0.53 0.2612

WCRNN [107]
valence 61.43% 0.51 0.2874 55.11% 0.43 0.3052 49.19% 0.41 0.3037
arousal 63.37% 0.53 0.2943 50.67% 0.41 0.2873 50.13% 0.45 0.3315

EDMIL valence 75.63% 0.72 0.2354 70.51% 0.69 0.2673 65.04% 0.65 0.2384
arousal 79.73% 0.77 0.2281 67.62% 0.65 0.2051 67.05% 0.65 0.2529



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2022 11

TABLE 4
Ablation Study for pre-processing (PP), feature extraction (FE) and multiple instance learning (MIL) module

CASE MERCA CEAP-360VR
acc w-f1 mse acc w-f1 mse acc w-f1 mse

MIL
valence 56.12% 0.53 0.4052 51.71% 0.49 0.3956 49.52% 0.41 0.4215
arousal 51.57% 0.49 0.4132 50.12% 0.47 0.4056 53.61% 0.45 0.4372

PP+MIL
valence 58.21% 0.51 0.4011 53.38% 0.53 0.3327 51.26% 0.50 0.4112
arousal 54.38% 0.49 0.3981 52.32% 0.51 0.3152 55.21% 0.51 0.4009

FE+MIL
valence 72.52% 0.71 0.2654 59.67% 0.57 0.2738 61.26% 0.59 0.2953
arousal 75.66% 0.72 0.2477 57.21% 0.56 0.2235 63.14% 0.59 0.2817

PP+FE+MIL valence 75.93% 0.72 0.2354 70.51% 0.69 0.2673 65.04% 0.65 0.2384
arousal 79.73% 0.77 0.2281 67.62% 0.65 0.2051 67.05% 0.65 0.2529

with the post-stimuli label) emotions of users. That makes it
challenging for classic MIL methods to identify the instances
which are correlated with the post-stimuli labels for fine-grained
emotion recognition.

For the deep learning based weakly-supervised methods, we
find that all three of them provide better classification (average acc
+7.75%) and regression (average mse -0.097)) results compared
with the four classic MIL methods. However, we also find out that
all three methods result in problems of overfitting for the classifi-
cation task. The accuracies on training sets are much higher than
the accuracies on testing sets: the accuracy differences for training
and testing sets are 23.14%, 19.27% and 22.28% for AMIL,
WSPPG and WCRNN, respectively. The results demonstrate that
deeper network or more complex structures (i.e., attention struc-
ture and recurrent structure) can decrease the generalizability of
the algorithms by providing more accurate results only on the
training set.

EDMIL obtains good recognition accuracy and w-f1 score (>
65% accuracy and 0.65 w-f1) for all three datasets. By taking ad-
vantage of the end-to-end structure, EDMIL automatically obtains
the matching scores for instances and bag labels without a pre-set
hypothesis. Compared with classic MIL methods, we do not need
to know whether most or only a small amount of the instances are
correlated with the post-stimuli labels. Compared with the three
baselines which use an end-to-end learning structure, EDMIL also
achieves better performance (average acc +10.34%, mse -0.03).
EDMIL does not suffer from overfitting: we only find the training
accuracy is 3.46% (averaged from three datasets) higher than the
testing accuracy for EDMIL. That is a result of the shallow feature
extraction network and simple instance regularization module we
use to design EDMIL. The result also shows that more accurate
fine-grained emotion recognition can be achieved using deep
neural network based (compared with traditional machine learning
based) weakly-supervised learning algorithms.

5.5 Ablation Study

We conduct an ablation study to verify the effectiveness of each
component. Since our algorithm needs MIL layers to obtain fine-
grained V-A, we begin with only using the MIL layers to train the
network. The MIL layers directly use the raw signal segments
without passing them through the pre-processing and feature
extraction module. Then we test the performance of combining
the MIL layers with the pre-processing (PP) and feature extraction
(FE) layers respectively. Finally, we combine all the modules in
EDMIL and present the results for comparison.

As shown in Table 4, both FE and PP contribute to the
classification and regression tasks. The FE benefits the network by
extracting deep features for MIL layers to learn the probability for
instances to predict the corresponding post-stimuli labels. Thus,
the recognition accuracies increase 12.80% and mse drops 0.148
on average after combining FE to MIL. The increased performance
of adding PP is not as significant as adding FE: the recognition
accuracies increase 6.07% and mse drops 0.027 on average after
combining PP to the network. The reason of this is that the convo-
lution layers of FE have already automatically filtered some of the
noise and artifacts in the signals when extracting the features. In
conclusion, all components contribute to both the classification
and regression tasks. The observations above demonstrate the
effectiveness of the components in the proposed algorithm.

5.6 Comparison between feature extraction methods

As we introduced in section 3.2, we compare three feature extrac-
tion methods (deepfeat, pcorrfeat and manualfeat) in the feature
extraction layer of EDMIL. The purpose of this comparison is to
find out whether the deep features (deepfeat) learned by the end-
to-end neural network can provide more accurate classification and
regression results compared with unsupervised feature extraction
method (pcorrfeat) and manually selected features (manualfeat).

Fig. 8. The accuracy and mse of deepfeat, pcorrfeat and manualfeat on
three datasets

As shown in Fig 8, deepfeat results in the highest accuracy.
pcorrfeat and manualfeat have similar accuracy which are lower
than deepfeat. In addition, the accuracy on the training and testing
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set is similar (training accuracies are 2.6%, 3.7% and 4.1% higher
than testing for CASE, MERCA and CEAP-360VR respectively).
The results indicate that using an end-to-end feature extraction
method does not result in overfitting (found by previous works on
fully-supervised learning for emotion recognition [3], [69]) due to
the weakly-supervised structure we use.

However, the mse of pcorrfeat and manualfeat are lower
than deepfeat. Thus, using unsupervised and manually extracted
features can result in better regression results. The reason of
higher mse for deepfeat is that the deep features are learned for
the classification task, not the regression task. The pcorrfeat and
manualfeat however, are not constrained with the classification
task, which can better represent the dynamic patterns of V-A
changes. However, EDMIL is designed for the classification task
particularly and the post-stimuli emotion labels for training are
also the discretized labels. In addition, for the regression task, the
maximum and minimum V-A are needed to normalize the instance
gains. It means users are expected to input their highest and lowest
V-A during the whole video watching, which is sometimes difficult
for users if the video is long. Thus, the classification is more
applicable (users only need to input their post-stimuli V-A) in
real-life scenarios.

6 Discussion

6.1 Fully-supervised v.s. weakly supervised: advantages
and disadvantages

The baseline methods we test in section 5.4 are all weakly
supervised methods trained with post-stimuli emotion labels. The
fully-supervised learning methods, however, learn the instance-
label relationship by building the direct mapping between in-
stances and fine-grained emotion labels. Thus, it is interesting
to compare the results between training with post-stimuli labels
(weakly-supervised) and fine-grained labels (fully-supervised).
The comparison can help us understand whether the additional
fine-grained (i.e., instance-level) labels can improve or compro-
mise the performance of fine-grained emotion recognition.

To implement this comparison, we choose two widely used
deep learning models, 1D-Convolutional Neural Network (1D-
CNN) and Long Short Term Memory networks (LSTM) for com-
parison. We choose the basic 1D-CNN [42] and LSTM networks
[108] from previous works for emotion recognition to avoid over-
tuning. We use the mean V-A label for each instance and directly
train the 1D-CNN and LSTM at instance-level (i.e., each instance
has a corresponding V-A label). We run the 3-class classification
task as we did for testing EDMIL. To evaluate performance,
we use two metrics: the recognition accuracy and dynamic time
warping distance (DTW) [109]. DTW is one of the most prominent
methods in similarity measurement for time series data [110]. The
results for the comparison are shown in Table 5.

As shown in Table 5, the fully-supervised algorithms achieve
lower recognition accuracy compared with our weakly-supervised
algorithm (EDMIL). The results of fully-supervised methods are
supposed to be better than EDMIL since the fully-supervised algo-
rithms have additional information (i.e., the instance-level labels)
for training. We then compare the training and testing accuracy
for both fully-supervised algorithms and EDMIL. We find that
both the 1D-CNN and LSTM have the problem of overfitting. The
accuracies on training sets are much higher than the accuracies
on testing sets (average of the three datasets: 20.04% and 18.28%

higher for 1D-CNN and LSTM respectively). However, for weakly-
supervised training, we do not find a much higher accuracy on
the training set (average of the three datasets: 3.46% higher for
EDMIL). The overfitting can be a result of the temporal resolution
mismatch between physiological signals and fine-grained self-
reports. When annotating their emotions in real-time, different
users have different awareness (interoception) levels about their
emotions [70]. The relationships between instances and labels
are different among users because the interoception levels across
individuals are different. Thus, the recognition algorithm can learn
contradictory information if we directly build a strong constraint
between the fine-grained labels and signals. That also explains the
finding of Romeo et al. [19] and Kandemir et al. [67] that building
a subject-independent emotion recognition model is challenging,
especially for fine-grained emotion recognition.

Although recognition accuracies are lower, the DTW distances
of the fully-supervised methods are lower than EDMIL. Lower
DTW distance means higher similarity of two time sequences.
That indicates that the fully-supervised algorithms can result in
better recognition results for the whole video instead of individual
instances. Compared with accuracy, DTW is less sensitive to the
time-shift of specific values in the sequence. Figure 9 shows
three examples of the prediction results of 1D-CNN and EDMIL
on three datasets. Taking the example of Figure 9 (c), although
EDMIL achieves higher accuracy (86.21% v.s. 55.17%) in this
specific case, the DTW of EDMIL is higher (6.0 v.s. 1.0) than
1D-CNN. The results also show that there is temporal mismatch
between individuals: when the evaluation metric (i.e., DTW) is
less sensitive to the time-shift, fully-supervised methods have
better performance. Since we run subject-independent validation,
the temporal relationship between input signals and emotions
learned from other subjects is different from the one used for
testing. That causes shifts of predictions in the time domain, which
makes the instance-level accuracies low but does not effect the
sequence-level prediction.

We also add the original signals to Figure 9. From Figure
9 we can see that the arousal labels have a clear correlation
between the EDA (Figure 9 (a), (c)), which is in line with most
of the studies of previous works [90]. The heart rate and skin
temperature correlate with both the valence and arousal changes
[111], [112]. We also find that some of the changes which are
ignored by EDMIL but captured by the fully-supervised algorithm
are also shown in the physiological signals. For example, for Fig.
9 (a), there is a duration of high arousal predicted by the fully-
supervised algorithm, which correlates to an increase in heart rate.
However, EDMIL predicts the emotion to be neutral during this
duration. The visual comparison between signals and predictions
validate our conclusion that fully-supervised algorithms can result
in better recognition results for whole videos instead of individual
instances.

6.2 Towards temporally precise emotion recognition: how
fine-grained can the recognition be?

The performance of EDMIL is influenced by the structure of the
bag: the length of the instance can affect the accuracy and the
temporal resolution of recognition [3]. The shorter instance length
representing a higher number of instances for one video watching
will lead to a finer level of granularity in temporal resolution.
However, a too-short instance length can bring challenges for
feature extraction because the information inside each instance
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TABLE 5
The comparison between weakly-supervised (EDMIL ) and fully-supervised (1D-CNN and LSTM) methods

EDMIL 1D-CNN [42] LSTM [108]
acc dtw acc dtw acc dtw

CASE valence 75.63% 16.0417 53.04% 10.886 54.74% 11.77
arousal 79.73% 12.6875 52.34% 6.997 53.82% 7.267

MERCA valence 70.51% 11.7688 51.57% 6.183 53.88% 6.031
arousal 67.62% 10.7917 42.91% 8.437 46.26% 8.215

CEAP-360VR valence 65.04% 9.9973 47.33% 5.941 44.36% 6.021
arousal 67.05% 9.3810 45.67% 5.733 43.27% 5.938

Fig. 9. Examples of physiological signals and prediction results for fully-supervised (1D-CNN) and weakly-supervised (EDMIL ) algorithm

can be insufficient for accurate recognition [3], [19]. Thus, it is
worthwhile to find out what are the appropriate instance lengths
for fine-grained emotion recognition based on deep multiple in-
stance learning. Thus, we conduct an experiment to test EDMIL
with different instance lengths on CASE, MERCA, and CEAP-
360VR, respectively. The recognition accuracies of different in-
stance lengths are shown in Figure 10.

As shown in Figure 10, the recognition accuracy decreases
significantly if the instance length is ≥ 5s. This result is coherent
with the finding from Romeo et al. [19] that a low number of
longer instances may lose salient information related to the local
physiological response. The accuracy also decreases when the
instance length is < 1s. Since emotion states are classified based
on the features from each instance, a short instance length can
entail insufficient information for accurate classification [3]. The
instance length of 2s achieves the best recognition accuracy for
both valence and arousal. For all the datasets, instance length from
1s to 2s can result in good recognition results (up to 60%). The
result is in line with the research from Paul et al. [6] that the
duration of emotion typically ranges from 0.5s to 4s. The takeaway
message from this experiment is that an instance length between 1s

Fig. 10. The recognition accuracy by different instance lengths on CASE,
MERCA and CEAP-360VR

to 2s is the appropriate length for fine-grained emotion recognition
using physiological signals and deep multiple instance learning.
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6.3 Does the percentage of post-stimuli annotations affect
recognition accuracy?

The performance of EDMIL can also be influenced by the per-
centage of post-stimuli V-A users annotated in each session. Tra-
ditional MIL methods require pre-set hypotheses about whether
the instances corresponding to the post-stimuli annotation densely
or sparsely consist of the bag [59], [62]. For example, if a user
annotates that he or she experienced happiness after watching
one video, traditional MIL methods can only obtain accurate
predictions if the user felt happy most of the time when watching
the video. In addition, if all (or most) of the instances are annotated
the same as the post-stimuli annotation, we can just do bag-level
prediction and train all the instances using fully-supervised learn-
ing. In that case, it is not needed to develop weakly-supervised
learning algorithms for identifying the instances which contribute
to predicting the post-stimuli annotation.

Fig. 11. The percentage of the post-stimuli annotations in each session (one
user watches one video) for CASE, MERCA and CEAP-360VR

To circumvent this, we first check the percentage of instances
which are annotated the same as the post-stimuli annotations
for the three datasets we use. For each dataset, suppose there
are S users who watch L videos. For each session, the user
annotates one post-stimuli V-A. Meanwhile, the user also an-
notates the fine-grained V-A for K instances inside this ses-
sion. The number of instances which the user annotated the
same as the post-stimuli annotations are N. The percentage of
the post-stimuli annotation for this session is p = N/K. Then
for the S× L sessions we obtain P = [p1, p2, . . . , pS×L] of V-A
for the whole dataset. As shown in Figure 11, the mean and
standard deviation of P for three datasets are: CASE-valence:
58.0%(0.18), MERCA-valence: 53.5%(0.20), CEAP-360VR-
valence: 49.5%(0.27), CASE-arousal: 57.4%(0.18), MERCA-
arousal: 50.2%(0.18), CEAP-360VR-arousal: 46.5%(0.25). A
Shapiro-Wilk tests shows that the percentages of the post-stimuli
annotations for all three datasets are not normally distributed (all
p < 0.05 for three datasets). As we compare three unmatched
groups, we perform a Kruskal-Wallis [113] test. We find signif-
icant differences of the percentages of the post-stimuli valence
(χ2(2) = 10.97, p < 0.05) and arousal (χ2(2) = 35.29, p < 0.05)
among the three datasets. We then run post-hoc pairwise compar-
ison tests using Mann-Whitney test [114] with Bonferroni correc-
tion. The p-values and effect sizes for the pairwise comparison
are shown in Table 6. In the tests, we find pairwise significant
differences (all p < 0.05) of P for both valence and arousal
between datasets. The results demonstrate that the datasets contain
sessions with different levels of time ambiguity (the percentage of
the post-stimuli annotations for different datasets are significantly

different), which makes it challenging for recognition algorithms
to have a generalizable performance on all three datasets.

TABLE 6
The post-hoc pairwise comparison tests using Mann-Whitney test on the

percentages of the post-stimuli valence and arousal

(a) valence

p-value
effect size CASE MERCA CEAP-360VR

CASE 0.566 0.583
MERCA 0.026 0.553

CEAP-360VR 0.004 0.038

(b) arousal

p-value
effect size CASE MERCA CEAP-360VR

CASE 0.611 0.650
MERCA <0.001 0.576

CEAP-360VR <0.001 0.003

Fig. 12. The relationship between the percentage of the post-stimuli anno-
tations and recognition accuracy

To find out whether the percentage of post-stimuli annotation
influences the recognition accuracy, we calculate the average
accuracy of V-A and the percentage of the post-stimuli annotations
for all the sessions in the three datasets. As shown in Figure 12,
EDMIL achieves up to 60% of the recognition accuracy if the
post-stimuli annotation accounts for more than 60% or less than
30% of one session. If the post-stimuli annotation accounts for
30% to 60% of one session, the accuracy is lower but still more
than 55%. Although the result shows up to 50% of accuracy for
all the sessions, the performance of EDMIL still decreases by
around 10% when the post-stimuli annotation is neither densely
(more than 60%) nor sparsely (less than 30%) consists of the
bag. The deep structure of EDMIL can automatically determine
whether the post-stimuli annotation densely or sparsely consists
of the bag. Thus, for these two conditions, EDMIL can achieve
relatively high accuracy. However, EDMIL recognizes the post-
stimuli annotation for each instance based on the probability
that the instance matches the post-stimuli annotation. Similar
to traditional MIL methods, when the post-stimuli annotation
neither densely nor sparsely consists of the bag, the probabilities
for instances tend to be similar [115], which makes it difficult
for the network to identify the corresponding instances. The
takeaway message of this experiment is that the percentage of the
post-stimuli annotations do have an influence on the recognition
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accuracy. EDMIL can achieve the highest recognition accuracy
if users annotate their most salient but short emotions (less than
30%), or their overall and longer (i.e., persisting) emotions (more
than 60%) after watching the video.

7 Limitations and future work
Given the challenges of predicting valence and arousal labels at a
fine level of granularity using only post-stimuli labels, there are
naturally limitations to our work. First, EDMIL can only identify
the annotated (post-stimuli) emotion from the baseline emotion
(e.g., neutral) because only post-stimuli labels are used for train-
ing. The none-annotated emotions are all categorized as part of
the baseline because of their low matching score for predicting
the post-stimuli labels. In addition, the regression performance
of EDMIL is not as good as classification since the network
is designed specifically for classification. In the future, we will
extend the algorithm into a multi-instance multi-label formulation
[116]. Secondly, we do not test EDMIL on longer duration stimuli
because of the limited availably of datasets. The video lengths
of emotion recognition datasets are commonly short (usually < 3
mins [15], [22], [23]) to avoid (visual) fatigue of participants. We
will test the performance of EDMIL for longer stimuli in the future
when more datasets are available. Moreover, the users in our study
were all adults. Previous works [117], [118] have shown that users
of different ages may have different emotional reactions to the
same video. We did not test EDMIL on elderly or children since
there are limited amount of datasets which contain continuously
annotated physiological signals from users across age groups. In
the future, we plan to test our algorithm on users of different ages
if more datasets become publicly available.

Another limitation of our work is that we only consider
physiological signals as the input modality. The application sce-
nario of our paper is to analyze the personalized experience
(emotions) of users while watching videos. Thus, the semantic
features (e.g., audio-visual content, text caption of the content,
speech transcripts) from video stimuli can also help to improve
the recognition results by providing the context information for
recognition. The text-derived fingerprints are more accessible
to generate this context information compared with video data
because of its low cost of computational recourses [119]. In the
future, we can build a weak constraint (e.g., using Canonical
Correlation Analysis (CCA) [3]) between the emotion semantic
features derived from the text of videos (e.g., speech transcripts,
emotion tags of videos) to promote the recognition accuracy.

At last, our algorithm can help video providers to build an
emotion analytics dashboard by only asking users to annotate
their post-stimuli emotions after one video watching. By adding
an emotion layer to the videos, our algorithm can help video
providers to understand the dynamic changes of users’ emotions
toward their products and adjust the content based on that. The
predicted emotions will be aligned with the video content and
visualized on the dashboard for video providers to analyze the
relationship between video content and the emotions of users.
In the future, we plan to apply our algorithm to such emotion
analytics dashboard for an application in real world scenario.

8 Conclusion
Fine-grained emotion recognition requires training the algorithm
with fine-grained emotion ground truth labels to build the mapping

between segments of signals and corresponding emotions. In this
paper, we propose EDMIL, a deep multiple instance learning based
emotion recognition algorithm to classify fine-grained valence
and arousal trained with only post-stimuli emotion labels. The
algorithm uses weakly-supervised learning to model the temporal
ambiguity of post-stimuli emotion labels and learn the instance-
label relationship according to the probability for each instance
to predict the post-stimuli label. The proposed algorithm achieves
reasonable performance (more than 65% on high/neutral/low clas-
sification) for subject-independent testing on three datasets col-
lected in three different environments (i.e., desktop, mobile, and
HMD-based VR). EDMIL also outperforms the classic multiple
instance learning methods which previous work [19] used for
emotion recognition. Running tests on three different datasets,
we found that EDMIL achieves similar recognition accuracy in
desktop, mobile and VR environments, which indicates its good
generalizable performance. Finally, our experiments show that (1)
weakly supervised learning can reduce overfitting caused by the
temporal mismatch between fine-grained annotations and input
signals, (2) instance segment lengths between 1-2s result in the
highest recognition accuracies, (3) EDMIL can achieve the highest
recognition accuracy if users annotate their most salient but short
emotions, or their overall and longer-duration (i.e., persisting)
emotions, and (4) feature extraction using an end-to-end structure
can improve recognition accuracy compared with manual feature
extraction as well as unsupervised feature extraction methods.
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