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Figure 1: (a) RCEA-360VR system components. (b) HaloLight: shaded halo arc in bottom-right viewport. (c) DotSize: circle dot
in bottom-right viewport. (d) A screen-shot of helper function. (e) Within-VR SAM Rating Panel.

ABSTRACT
Precise emotion ground truth labels for 360◦ virtual reality (VR)
video watching are essential for fine-grained predictions under
varying viewing behavior. However, current annotation techniques
either rely on post-stimulus discrete self-reports, or real-time, con-
tinuous emotion annotations (RCEA) but only for desktop/mobile
settings. We present RCEA for 360◦ VR videos (RCEA-360VR),
where we evaluate in a controlled study (N=32) the usability of
two peripheral visualization techniques: HaloLight and DotSize.
We furthermore develop a method that considers head movements
when fusing labels. Using physiological, behavioral, and subjective
measures, we show that (1) both techniques do not increase users’
workload, sickness, nor break presence (2) our continuous valence
and arousal annotations are consistent with discrete within-VR and
original stimuli ratings (3) users exhibit high similarity in viewing
behavior, where fused ratings perfectly align with intended labels.
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1 INTRODUCTION
Watching 360◦ videos using head-mounted displays (HMDs) can
provide interactive and immersive Virtual Reality (VR) experiences.
Unlike desktop ormobile videos, 360◦ videos viewed throughHMDs
allow users to freely rotate their heads and focus on a portion of the
scene [67]. Within such experiences, several works have established
that such immersive VR environments have the capacity to evoke
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a wide range of emotions in humans [28, 31, 76, 78], and through
sensing of physiological and behavioral markers (e.g., brain and
heartbeat dynamics), can enable automatic emotion recognition of
valence and arousal during such experiences [68]. Whether the goal
is to induce, track, or recognize emotion for educational purposes
[1], embodied virtual tourism [7], news engagement [104, 106],
or develop emotion recognition and adaptive systems [68] within
immersive VR experiences, it is important to collect accurate and
precise ground truth emotion labels. However, collecting emotional
responses to 360◦ VR videos can be time consuming, demand con-
siderable cognitive effort and interpretation [103], or carried out
outside the VR experience (cf., [18, 76]) which may break the sense
of immersion and presence [54, 87]. Furthermore, by allowing users
to dynamically adjust their viewport freely and construct their own
viewing experience [67], we can no longer be sure the annotations
pertain to that specific scene at any given point in time. This neces-
sitates the development and evaluation of new tools for continuous
annotation of affective reactions of users while they watch 360◦
videos, whereby such viewport-dependent annotations can only be
generated in such a setting, so must be provided in real-time.

Typically emotion data collection takes place via post-interaction
or post-stimuli self-reports of valence and arousal (cf., [84]), which
are retrospective and discrete in nature (e.g., Self-AssessmentManikin
(SAM) [10]). However, such self-reports are temporally imprecise,
especially for video content, since one can experience multiple
emotions throughout [73, 94, 114] (e.g., experiencing >1 emotion
when entire video is labeled ‘happy’). Moreover, retrospective eval-
uations rely on episodic memory (cf., self-report construal in HCI
[30]), which can introduce episodic memory biases (e.g., peak-and-
end effects) [21]. While there have been several works on real-time
and continuous emotion annotation, however only for desktop (e.g.,
CASE [89]) or mobile contexts (e.g., RCEA [114]). For immersive VR
experiences, in our earlier work [112] we designed two peripheral
visualization techniques for continuous annotation: HaloLight and
DotSize. However they did not perform any usability tests, nor
study their effectiveness in producing meaningful precise ground
truth labels considering users’ changing head movement behav-
ior, and their consistency with within-VR retrospective emotion
(e.g., SAM) ratings. This necessitates the need for creating pre-
cise viewport-dependent ground truth labels by leveraging head
movement patterns in 360◦ video watching.

This paper presents the Real-time and Continuous Emotion
Annotation for 360◦ VR (RCEA-360VR) system.We ask: (RQ1a)
How does RCEA-360VR usability compare with discrete and retro-
spective emotion assessment methods (within-VR emotion ratings),
specifically with respect to mental workload, motion sickness, and
presence? (RQ1b) Which of RCEA-360VR’s peripheral visual feed-
back techniques,HaloLight andDotSize, provides better usability
and user experience?We conducted a controlled, indoor experiment
(N=32) (Figure 1(a)) and compared mental workload, presence, and
motion sickness between HaloLight, DotSize, and discrete emotion
assessments (within-VR SAM ratings) by measuring subjective and
physiological measures1. To verify if RCEA-360VR’s annotations are
effective, we ask: (RQ2) How can we build precise emotion ground

1Raw data, processing scripts, and basic analyses of user physiological and behavioral
data will be made publicly available in a separate, dataset paper.

truth labels using RCEA-360VR considering user head movement
behavior? We develop a method that considers head movements
when fusing labels. It comprises three steps: continuous annota-
tion time-alignment, segment-based viewport clustering, and lastly
viewport-dependent annotation fusion.

Our exploratory work offers two primary contributions: (1) We
evaluate RCEA-360VR using subjective and physiological measures,
and show that its two peripheral visualization methods, HaloLight
and DotSize, are both usable for collecting precise labels while users
are immersed in VR. In other words, such techniques are suitable for
collecting fine-grained emotion annotations of valence and arousal
in real-time while users are watching 360◦ videos. (2)We contribute
a method (continuous annotation time-alignment, segment-based
viewport clustering, viewport-dependent annotation fusion) with
associated algorithms that enables researchers to aggregate contin-
uous ratings while considering varying head movement behavior
during 360◦ video watching. Our method can be used to build accu-
rate and precise ground truth emotion labels by combining viewing
traces with annotation fusion methods. For human-computer inter-
action and emotion computing researchers, this provides greater
insight into the temporal nature of reported humans emotion dur-
ing immersive, viewport-dependent viewing experiences. At the
same time, it enables machine learning researchers and practition-
ers to construct more temporally precise labels for training emotion
recognition systems. Below, we start with a survey of related work.

2 RELATEDWORK
Several research strands influenced our approach (emotion anno-
tation, VR-based annotation techniques, and viewing behavior in
360◦ videos), which we describe below.

2.1 Discrete vs. Continuous Emotion
Annotation Techniques

Given our task of simultaneously watching 360◦ videos usingHMDs
and annotating in real-time continuously, we follow prior work
on continuous annotation [23, 34, 89]. Here, we draw on Russell’s
Circumplex model [84] using the two dimensions of valence and
arousal (V-A) and to capture the finer granularity of emotion anno-
tations through the user’s immersive experience. Emotion assess-
ments however are typically obtained through post-stimuli mea-
surement instruments. For example, the Self-Assessment Manikin
(SAM) [10], Pick-A-Mood (PAM)[27] and AffectButton [14] tools
allow users to give detailed emotional feedback about their feel-
ings after experiencing stimuli. However these post-stimulus, dis-
crete annotation techniques cannot capture the temporal nature of
emotions that can occur within temporal media (e.g., 360◦ video)
[94, 114]. This led researchers to develop real-time, continuous
emotion annotation techniques to obtain finer-grained emotion
ground truth labels. With a computer-mouse interface, the FEEL-
CARE [23], EmuJoy [73] and Gtrace [24] software packages require
users to annotate emotions in a two-dimensional space by clicking
the mouse button continuously, which increases users’ physical
and cognitive load [72, 113].

Several researchers consider the usage of auxiliary devices to
lower mental workload while annotating. Girard et al. [33] devel-
oped CARMA which provides users a one-dimensional emotion
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slider to report basic emotion (positive or negative) by pushing it
up and down, and the RankTrace tool [62] was implemented by a
physical radial controller to specify a single, continuous dimension
such as emotional intensity. DARMA [34] and CASE [89] enable
users to input their emotions using a joystick in the V-A space,
and display annotation feedback on a coordinate system that is
either next to the video player, or superimposed in the upper-right
corner of the player. More recently, Zhang et al. [114] designed
the RCEA method for mobile settings, where users use a virtual
joystick to annotate emotions in real time while watching videos on
mobile device. Given the small screen display and distracting nature
of mobile environments, they leverage peripheral visual feedback
to show emotion states, which further motivates our approach of
drawing on users’ peripheral visual attention [3, 71]. While some
of the foregoing tools allow real-time and continuous annotation,
there are currently no such tools developed for VR environments.

2.2 Emotion Annotation in Virtual Reality
During VR experiences, the users’ field of view is commonly con-
strained by the HMD. As Putze et al. stated [80], administering
questionnaires in VR is becoming more common, which can ease
participation, reduce the Break in Presence (BIP) and avoid biases.
Toet et al. introduced the EmojiGrid [102], a smiley grid for emo-
tion assessment in the virtual scenarios. Krüger et al. [54] proposed
Morph A Mood (MAM), that provides a set of 3D characters with
facial expressions for users to choose, aiming to be more intuitive.
Both self-report techniques however occur after the experience.
Voigt-Antons et al. [105] designed a stationary V-A grid interface
in VR, with the background of 360◦ video, and users evaluated each
video by clicking on a point in the grid continuously. However, they
do not address the usability of this technique, nor how to fuse the
resulting annotations. Moreover, it appears likely that a static 2D
grid superimposed on the video can pose distractions. To address
this, in our earlier work [112] we considered peripheral visualiza-
tion techniques to minimize workload and distraction, where they
propose the design of HaloLight and DotSize for use in VR. While
both techniques aimed at unobtrusively presenting emotion state
on the users’ periphery while immersed in VR, it is still unknown
how usable and effective such techniques are. In this work, we pro-
vide a systematic usability evaluation of the RCEA-360VR system
and associated peripheral visualization techniques, and provide
a comparison with discrete and retrospective within-VR emotion
rating methods.

2.3 Head Movements and Viewport-based
Clustering of 360◦ Viewing Behavior

Unlike 2D videos, users can direct their field of view to any part of
the scene while watching 360◦ videos. Thus it is important to un-
derstand how users observe and explore VR content [83]. Marmitt
et al. [70] conducted a precursory study to analyze visual scan-
paths in VR settings, and found that Head Movement (HM) and Eye
Movement (EM) data are commonly used to analyze 360◦ viewing
behavior. Wu et al. [109] established a head tracking dataset using
HTC Vive across various categories of 360◦ videos and found that
users share common patterns while watching VR videos. David et

al. [25] presented a dataset with HM and EM data from 57 partic-
ipants watching ten 360◦ videos, and provided guidance on how
to generate saliency map and scanpaths from raw behavior data.
Xu et al. [111] investigated users’ viewing behavior and linked it
with evaluation of visual quality of 360◦ videos. They found a high
consistency in viewing direction among subjects, and that users’
attention highly correlates with video content. Furthermore, Rossi
et al. [81] proposed a graph-based method to identify clusters of
users who are attending to the same portion of spherical content,
and Nasrabadi et al. [74] presented a viewport-based prediction
method based on clustering. While these works aim to model users’
viewing behavior and predict visual attention, they do not consider
users’ annotated emotions with varying viewports. The novelty in
our contribution is the viewport-dependent emotion annotation
fusion method.

3 EVALUATING USABILITY OF RCEA-360VR
To answer (RQ1a) and (RQ1b), we evaluate the potential of real-
time, continuous emotion annotation for 360◦ VR videos (RCEA-
360VR). Specifically, we conducted a controlled, indoor laboratory
experiment (N=32) (Figure 1a) and compared mental workload,
presence, and motion sickness between HaloLight, DotSize, and
discrete emotion assessments (within-VR SAM ratings) across phys-
iological and subjective measures. Below we describe our study
design, usability and annotation consistency results, and discuss
how they feed into our viewport-dependent fusion method.

3.1 HaloLight and DotSize Techniques
Following a user-centric approach [75] with iterative design rounds
based on an expert co-design session [112], we designed in earlier
work two techniques, HaloLight and DotSize (as shown in Figure
1b&c). These were deemed suitable to indicate annotation state
feedback. These visualization techniques are based on three de-
sign principles: P1 - Design for HMD-based 360◦ VR video, P2 -
Design for input device ergonomics, and P3 - Design for divided
attention. These served as heuristics to narrow down the design
space, and based on VR HMD-based interaction design guidelines
[47]. Both techniques leverage joystick-based input (cf., Sec 3.2.4),
where visual feedback is presented in the periphery of users’ visual
attention, fixed to the bottom right corner of the HMD viewport.
Design attributes including position, size and transparency [43, 59]
were considered.

For annotating emotions, we used the 2D V-A model based on
Russell’s Circumplex model [84]. Each quadrant in our 2D model
(Figure 1d) has a distinct color, and represents emotion keywords
such as excited, sad, etc. These four colors (HEX = #eecdac, #7fc087,
#879af0, #f4978e for quadrants one to four, respectively) are used to
provide peripheral feedback to users on which emotion quadrant
they are currently annotating [41] in while watching a 360◦ video.
Colors were selected based on a simplified version of Itten’s color
system [96], which has been shown to be intuitive and easy to
understand [41]. Whereas HaloLight uses color opacity to indicate
emotion intensity, DotSize uses the size of the filled circle to indi-
cate intensity. How each technique works is shown as a video in
Supplementary Material.



CHI ’21, May 8–13, 2021, Yokohama, Japan Xue, et al.

3.2 Study Design
Drawing on the Circumplex model [84, 90] of emotion (Figure
1d), there are four types of videos shown depending on V-A video
ratings. These are: high valence / high arousal (HVHA), high valence
/ low arousal (HVLA), low valence / low arousal (LVLA), low valence
/ high arousal (LVHA). Our experiment is a 2 (Annotation Method:
HaloLight vs DotSize) x 4 (IV2: Video Emotion: HVHA, HVLA,
LVHA, LVLA) within-subjects design, tested in a controlled, indoor
environment. We evaluated two videos per Video Emotion, paired
with each annotationmethod, resulting in eight videos (2 xHVHA, 2
x HVLA, 2 x LVHA, 2 x LVLA). Participants annotated four of them
using HaloLight and the other four using DotSize. At the end of each
video, participants were asked to report their emotional experience
using a within-VR SAM rating scale. A SAM rating [10] panel was
embedded in VR to visualize the scales of V-A, which allows users to
stay closer to the context of an ongoing exposure than outside of the
VR [80]. We chose the 9-point scale given that prior work found that
5-points was limited in expressivity (cf., [101]). Arousal scale ranges
from calm (1) to excited (9), while valence ranges from unpleasant
(1) to pleasant (9), as shown in Figure 1e. Throughout the study,
subjective and physiological measures from participants were taken.
Our study followed strict guidelines from our institute’s ethics and
data protection committee. Experiment details are explained below.

3.2.1 Video Stimuli. We selected two 360◦ videos to represent each
emotion type (Table 1) from the database provided by Li et al. [56].
This database contains mean V-A ratings from 95 subjects. We used
youtube-dl2 to download the contents from YouTube with 4K in
resolution (3840 x 1920px), equirectangular format. The videos are
of different lengths where most are longer than 2 minutes, and
this can result in motion sickness and fatigue [13, 56]. To avoid
such issues and following Lo et al. [61] and Koelstra et al. [52]
work, we extracted 60s segments from each video with no scene
cuts. All video stimuli contained audio. An annotation study was
conducted to test if the clipped 60s videos still provided the same
original V-A ratings. Since prior work on emotion research has
shown that affective states can be elicited using film stimuli with
lower range lengths of 8s [35] (Western films) or 58s [26] (Asian
films), we considered that such clipping should not pose issues
for elicitation. 12 researchers from our institute viewed these clips
(Table 1) and used the within-VR SAM rating panel to report V-A
scores after each video. Agreement of the ratings (N=12) across
eight selected videos were assessed by inter-rater reliability (IRR)
using a two-way random, absolute agreement, average-measures
intra-class correlation (ICC) [40]. Average resulting ICCs regarding
the eight videos suggest excellent reliability [19] for valence scores,
total average ICC = 0.972,p < 0.05, and for arousal scores, the
total average ICC = 0.976,p < 0.05, indicating that V-A were rated
similarly across participants. Results are shown in Table 1, where
url links, start time offset, and V-A scores are indicated.

3.2.2 Subjective Measures. To evaluate VR experiences, motion
sickness and the sense of presence are two widely considered hu-
man factors [8, 17]. We chose a standardized Simulator Sickness
Questionnaire (SSQ) [50] to measure the level of motion sickness on
a scale from 1 (none) to 4 (severe). Igroup Presence Questionnaire

2https://github.com/ytdl-org/youtube-dl; last retrieved: 22.12.2020

(IPQ) on a scale from 1 (fully disagree) to 7 (totally agree) [86] was
used to assess the level of presence experienced in the virtual set-
ting, which is used in our work to evaluate users’ perceptions of VR
videos. To assess perceived workload, we chose the commonly used
NASA Task Load Index (NASA-TLX) questionnaire [44]. Finally, we
also measured the usage count of our helper function, which can
aid in assessing how familiar or confused users feel when using our
RCEA-360VR system.

3.2.3 Physiological Measures. We employed three physiological
measures that were shown to correlate with mental workload [16]:
Pupil Dilation (PD), Electrodermal Activity (EDA), and Inter-beat
Interval (IBI). PD has been shown to be an accurate marker of
mental workload [11, 77], where the pupil dilation decreases as the
workload increases. However, previous works [79, 116] reported
that ambient light will also greatly affect the PD values. Since
users’ vision is engulfed by the HMD, the illumination of 360◦
scenes should be considered (cf., Section 3.5). EDA is also quite
sensitive to users’ arousal level, which reflects activity within the
sympathetic axis of the automatic nervous system [32]. Previous
works [12, 20] have shown that physiological arousal will increase
if the users’ mental workload is increasing. Finally, IBI is another
sensitive indicator associated with mental workload [46, 114]. We
draw on these three physiological measures as objective measures
of mental workload.

3.2.4 Hardware and Software Setup. Participants viewed the 360◦
video clips through an HTC Vive Pro Eye3 HMD, with a reported
0.5◦ accuracy and frequency of 120Hz Tobii Pro eye tracker inte-
grated. The HMD provides a resolution of 2880 x 1600 pixels, a 110◦
field of view and a refresh rate of 90Hz. In parallel, the audio signal
was sent to the headset equipped in the HMD. Correspondingly,
head rotation and eye gaze data from the HMD were recorded at
120Hz. For annotation input, we used a wireless digital gaming
joystick, called Joy-Con4. With a return spring, the proprioceptive
feedback could aid in realigning to center position under no force,
which makes it suitable for continuous annotation (cf., [88]) while
wearing an HMD. We also added an 11mm heightening cap to ex-
tend the length of the joystick, thereby helping to increase flexibility
of operation. The movement of the joystick head maps into a 2D
V-A space, where the x axis indicates valence, while the y axis indi-
cates arousal, as shown in Figure 1d. Participants were instructed
to annotate their emotion state by moving the joystick head into
one of the four quadrants. To increase the emotion intensity, the
participant could move the joystick head further. Annotated data
was sampling at 10Hz (similarly to [89, 114]), because according
to Loram et al. [63] the upper frequency limit of human joystick
control is 5Hz and doubling this ensures robustness.

We also developed an on-demand helper function, so that par-
ticipants who forget what color corresponds to which emotion
quadrant could use it for easy lookup. This function is activated
through a joystick button press event. The helper function is shown
in Figure 1d, where we include the most representative emotion
keyword. All keywords however were explained to participants
prior to the study. At the end of each video, participants were asked
3https://enterprise.vive.com/us/product/vive-pro-eye/; last retrieved: 22.12.2020
4https://www.nintendo.com/switch/choose-your-joy-con-color/; last retrieved:
22.12.2020
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Table 1: Description of 360◦ videos. Type code: H (high), L (low), Valence (V), Arousal (A).

Video Type
OriginalDB
Mean (V, A)

AnnotationStudy
Mean (V, A)

Name YoutubeID
Start
Offset

Description

V0 Training (6.36, 5.93) / NASA - Encapsulation & Launch... D7-AmamuJEA 7s Documentary film rocket launches
V1 HVHA (7.47, 5.35) (7.08, 6.08) Puppies host SourceFed for a day c7sA3EdXSUQ 0s Viewers get up close with some puppies
V5 HVHA (6.75, 7.42) (6.83, 7.42) Speed Flying g6w6xkQeSHg 0s Viewer follows a speed wing pilot
V3 LVHA (3.20, 5.60) (2.58, 6.83) Zombie Apocalypse Horror pHX3U4B6BCk 65s Action film on soldiers and zombie attack
V7 LVHA (4.40, 6.70) (4.42, 7.17) Jailbreak 360 vNLDRSdAj1U 127s Action film depicting closed-circuit jailbreak scene
V2 HVLA (6.13, 1.80) (8.08, 1.91) Mountain Stillness aePXpV8Z10Y 10s Atmospheric shots of Canadian snowy mountains
V6 HVLA (6.57, 1.57) (7.67, 1.50) Malaekahana Sunrise -bIrUYM-GjU 0s Sun rising over the horizon at a beach
V4 LVLA (2.53, 3.82) (2.42, 4.17) War Zone Nxxb_7wzvJI 3s Journalistic clip of a war torn city
V8 LVLA (2.73, 3.80) (2.17, 3.17) The Nepal Earthquake Aftermath 5tasUGQ1898 41s Short film on effects of an earthquake in Nepal

to report their emotion state using the within-VR SAM rating panel.
Participants could gaze at a single SAM icon, and use the X but-
ton on the Joy-Con controller to confirm their choice. The helper
function and within-VR SAM rating panel interaction are shown in
video in Supplementary Material.

We constructed a custom scene in Unity Engine5 to display 360◦
videos and corresponding audio and show the annotation feedback
based on users’ continuous ratings. Equirectangular content was
projected onto the skybox while the camera was fixed into the
center of the sphere. We integrated the Tobii Pro SDK6 to collect
HM and EM data from the HMD, along with the SteamVR SDK7

which provides virtual reality support. The project ran on a 2.2
GHz Intel i7 Alienware laptop with an Nvidia RTX 2070 graphics
card. We captured participants’ physiological signals through the
Empatica E4 band8 worn on the non-dominant hand. This wearable
device can measure BVP and EDA, and a built-in application which
calculates HR and IBI from BVP. Processing of these signals are
described in Sec. 3.4.5. A mobile device (Nexus 5, 32GB, 5", 1920-
1080) was used to collect data from Empatica E4 band via Bluetooth.
Timestamp of this device was set according to the clock of the
experimental laptop, synchronized via an NTP server9.

3.2.5 Procedure. Our experiment procedure is shown in Figure 2,
lasted approximately 50 min. Before the experiment, participants
carefully read and signed the data privacy and consent form and
filled in demographic details. We explained the study tasks, in-
cluding the 2D Circumplex model and how to annotate with the
Joy-Con controller. They then filled in a pre-study SSQ. We then
moved on to a calibration session, where we measured participants’
Inter-pupillary Distance (IPD) to set the distance between the lenses.
Each participant was equipped with an Empatica E4 wristband, Vive
Pro Eye HMD, and sat in a swivel chair. Experiment room was air
conditioned (21◦ Celsius), which results in low humidity. For Empat-
ica E4 measures, we followed the official guide10, where we ensured
participants relaxed their arm on the swivel chair side, and wore
the wristband on their non-dominant hand to minimize motion
artifacts. Furthermore, we slightly tightened the E4 wristband to
avoid electrode movement on users’ wrists, where the experimenter
checked this before each session. The embedded HMD eye tracker

5https://unity.com/; last retrieved: 22.12.2020
6http://developer.tobiipro.com/unity/unity-getting-started.html; last retrieved:
22.12.2020
7https://store.steampowered.com/app/250820/SteamVR/; last retrieved: 22.12.2020
8https://www.empatica.com/en-int/research/e4/; last retrieved: 22.12.2020
9android.pool.ntp.org/
10https://support.empatica.com/hc/en-us/articles/206374015-Wear-your-E4-
wristband-; last retrieved: 22.12.2020

was calibrated following the HMD instructions11. During the train-
ing session, we showed a 360◦ video documentary with neutral
emotion. Each participant was given a demo on using RCEA-360VR,
the helper function, and the peripheral feedback techniques. Either
HaloLight or DotSize was provided during training depending on
the counterbalance condition. Finally, participants were given time
to get familiar with viewing 360◦ videos by moving their head and
rotating their chair.

Our experiment consists of two blocks. In each block we show
the respective technique depending on the starting condition, where
then participants watch four representative videos from each of the
four quadrants. We counterbalanced the effect of peripheral feed-
back type by showing half participants HaloLight first and other
half DotSize first. Further, we applied fractional factorial design
[38] to counterbalance the effect of different videos within each
block. Importantly, a small cube object was placed at the center of
the video before playing, to ensure the participants start watching
the videos at the same position. While watching a 360◦ video, par-
ticipants rated their emotional states (as V-A) continuously using
the joystick. Following prior work [56, 65], we wanted to avoid
carry over effects (so-called Halo effects) of one emotion to another
and reduce fatigue of viewing 360◦ video. Therefore, we enforced a
delay of 15s between videos, where we also ensured a time gap of 5
minutes between each experimental block. At the end of a video, par-
ticipants submitted a SAM rating using the Within-VR SAM rating
panel. At the end of each block, we helped the participant remove
the HMD. They then filled in the SSQ, IPQ, and NASA-TLX ques-
tionnaires. Finally, participants were given a brief semi-structured
interview about their overall experience with RCEA-360VR, and
using HaloLight and DotSize.

3.2.6 Participants. 32 participants12 (16f, 16m) aged between 18-33
years old (M = 25, SD = 4.0) were recruited. Participants were re-
cruited from our institute and nearby institutes, and spanned varied
nationalities. 37.5% had never experienced 360◦ VR using an HMD,
where the rest had experienced VR at least once. However all were
familiar with 360◦ videos, and none reported visual (including color
blindness), auditory or motor impairments. Participants were com-
pensated with a monetary reward for participating, commensurate
with policies on user recruitment.

11https://www.vive.com/us/support/vive-pro-eye/category_howto/calibrating-eye-
tracking.html; last retrieved: 22.12.2020
12For effect size f=0.25 under α = 0.05 and power (1-β ) = 0.95, with 8 repeated mea-
surements within factors, we need 24 participants.

https://support.empatica.com/hc/en-us/articles/206374015-Wear-your-E4-wristband-
https://support.empatica.com/hc/en-us/articles/206374015-Wear-your-E4-wristband-
https://www.vive.com/us/support/vive-pro-eye/category_howto/calibrating-eye-tracking.html
https://www.vive.com/us/support/vive-pro-eye/category_howto/calibrating-eye-tracking.html
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Figure 2: Our experiment procedure.

3.3 Results
Below we analyze the consistency of annotations between Halo-
Light and DotSize and compare with within-VR SAM ratings, and
thereafter analyze the subjective (NASA-TLX, IPQ, SSQ) and physio-
logical measures (PD, IBI, and EDA). While our work is exploratory,
we expected that workload from low to high is: None < SAM <Halo-
Light/DotSize. In the None condition, users did not perform actions,
so we expect workload to be low, and used this as a baseline. For in-
putting SAM ratings, users need to give a (retrospective) V-A rating
after watching a video. For HaloLight and DotSize however, users
need to annotate their emotions continuously while watching. This
may incur higher workload, even though peripheral visualization
techniques were designed for divided attention (cf., Sec. 3.1).

3.4 Emotion Ratings
3.4.1 Mean Valence-Arousal Ratings of Videos for HaloLight and
DotSize. Mean V-A rating distributions across 32 participants for
videos spanning four quadrants are shown as boxplots in Figure 3a.
We first calculate the mean of continuous V-A ratings annotated by
32 participants watching eight videos. Then for each type of video,
e.g., V1 and V5 belong to high V-A, we average the mean of continu-
ous annotations from the two videos across all participants. We run
inferential statistics to test differences among the video types. A
Shapiro-Wilk test showed that both themean V-A ratings fromHalo-
Light and DotSize are not normally distributed (p < 0.05). We there-
fore performed a Friedman rank sum test on the mean of valence
(χ2(3) = 57.94,p < 0.001) and arousal (χ2(3) = 56.96,p < 0.001)
for HaloLight, then valence (χ2(3) = 71.44,p < 0.001) and arousal
(χ2(3) = 43.39,p < 0.001) for DotSize. The results show significant
effects of video emotions on V-A ratings. Post-hoc Bonferroni pair-
wise comparisons using Wilcoxon rank sum tests were performed
to precisely determine whether the ratings of any two video types
are different [89, 114] and the results of these comparisons are pre-
sented in form of symmetric matrix plots in Figure 3b. Effect sizes
for significant post-hoc pairwise comparisons between each video
type ranged from [0.600, 0.824].

3.4.2 HaloLight and DotSize Consistency across Mean Continuous
V-A and Within-SAM Ratings. To assess the agreement of the two
peripheral annotation visualization techniques (HaloLight and Dot-
Size) with the mean of continuous V-A ratings, we performed a
two-way mixed, absolute agreement, average-measures ICC. The
average resulting ICCs suggest excellent reliability for the valence
score, total average ICC = 0.792,p < 0.05, and of good reliability
for the arousal score, total average ICC = 0.606,p < 0.05. Similarly,
we assessed consistency between HaloLight and DotSize with our
within-VR SAM ratings. The average resulting ICCs for HaloLight
suggest excellent reliability for the valence score, total average

ICC = 0.855,p < 0.05, and of good reliability for the arousal score,
total average ICC = 0.731,p < 0.05. The average resulting ICCs for
DotSize suggest excellent reliability for the valence score, total av-
erage ICC = 0.909,p < 0.05, and of good reliability for the arousal
score, total average ICC = 0.706,p < 0.05.

3.4.3 SSQ, IPQQuestionnaires & Helper Function Usage. A Shapiro-
Wilk normality test showed that participants’ average SSQ ratings
are not normally distributed (p < 0.001). As we compare three
matched groups within subjects, then we directly performed a
Friedman rank sum test. Here however, we did not find a signifi-
cant effect regarding pre-study (M = 1.139, SD = 0.229), HaloLight
(M = 1.268, SD = 0.290), and DotSize (M = 1.234, SD = 0.257)
on SSQ ratings (χ2(2) = 0.777),p = 0.106). With respect to IPQ, a
Shapiro-Wilk test showed that the average IPQ scores was normally
distributed (p > 0.05). A paired sample t-test was applied to check
the differences in terms of peripheral feedback types. We found no
significant differences (t(31) = 0.397,p = 0.694) between HaloLight
(M = 4.181, SD = 0.710) and DotSize (M = 4.250, SD = 0.711) for
IPQ responses. A Shapiro-Wilk test showed that the usage count
of helper function is not normally distributed (p < 0.05). Then
we performed a Wilcoxon Signed-rank test and did not find sig-
nificant differences (Z = 0.801,p = 0.429) between HaloLight
(M = 1.008, SD = 1.153) and DotSize (M = 0.875, SD = 0.963). For
these measures. HaloLight and Dotsize were perceived to be similar.
Results across participants are shown in Figure 4.

3.4.4 NASA-TLXWorkload Scores. Subjective workload scores (Fig-
ure 4) were computed for modified NASA-TLX13 [44] responses,
and analyzed within groups per visualization method (HaloLight,
DotSize). A Shapiro-Wilk test showed that the overall workload
scores were normally distributed (p > 0.05). We therefore run a
paired samples t-test, however do not find significant effects of
workload (t(31) = 0.105,p = 0.917) between HaloLight (MD =
33.750, IQR = 20.417) and DotSize (MD = 38.333, IQR = 19.791).

3.4.5 PD, EDA & IBI. PD, EDA changes and IBI are compared for
each of four conditions: without annotation (None), HaloLight,
DotSize and within-VR SAM rating (SAM). The results are shown
in Figure 5. For PD, we acquired and used raw values (in mm)
from the HMD Tobii eye tracker, sampled at 120Hz. Means and
standard deviations of PD values for the four conditions are:None =
4.777(0.687), HaloLiдht = 3.473(0.572), DotSize = 3.444(0.574),
SAM = 3.209(0.526).). A Shapiro-Wilk test showed that the PD
values are not normally distributed (p < 0.05). As we compare four
matched groups within participants, we performed a Friedman rank
sum test and found a significant effect of condition on the PD values
(χ2(3) = 73.95,p < 0.001). Post-hoc pairwise comparisons using

13We omit Annoyance and Preference.
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Figure 3: (a) Boxplots for mean V-A ratings for HaloLight and DotSize. (b) Pairwise comparisons of mean V-A for HaloLight
and DotSize (p > 0.05, not significant; p < 0.001, highly significant).

Figure 4: Barplots for mean SSQ, IPQ, NASA-TLX, and mean helper function usage count.

Figure 5: Boxplots for mean EDA changes, IBI, and PD values for our four different conditions.

Bonferroni correction shows significant differences between None
and HaloLight (Z = 5.841,p < 0.01, r = 0.730), between None
and DotSize (Z = 5.975,p < 0.01, r = 0.747) and between None
and SAM (Z = 6.297,p < 0.01, r = 0.787), however did not show
significance between HaloLight and DotSize (Z = 0.081,p > 0.05),
between HaloLight and SAM (Z = 1.947,p > 0.05), nor between
DotSize and SAM (Z = 1.846,p > 0.05).

With embedded sensors, the Empatica E4 collects BVP data from
PPG (64Hz), and EDA data from an EDA/GSR sensor in µS (4Hz). For
EDA changes, we used the first-order differential of the EDA signal
to represent arousal changes following previous work [32]. A third-
order low-pass filter with a cut-off frequency of 2Hz was used to re-
move the artifacts in EDA. Then we calculated EDA changes by the
non-negative first-order differential of filtered EDA signals follow-
ing [114]. EDA changes means and standard deviations for the four
conditions are: None = 0.065(0.030), HaloLiдht = 0.054(0.027),
DotSize = 0.053(0.029), SAM = 0.060(0.034). A Shapiro-Wilk test
showed that EDA changes is not normally distributed (p < 0.05).
Then we performed a Friedman rank sum test to compare four

matched groups within participants. Here we did not find a signifi-
cant difference on EDA changes (χ2(4) = 7.609,p = 0.055).

IBI data measures the interval between individual heart beats
and is computed from BVP in seconds. For IBI, we obtained the IBI
sequence from the processing of the PPG/BVP signal, where Empat-
ica’s processing algorithm14 already removes incorrect peaks due
to BVP signal noise. The mean and standard deviations of IBI val-
ues for the four conditions are: None = 0.825(0.097), HaloLiдht =
0.838(0.099), DotSize = 0.832(0.101), SAM = 0.839(0.103). ). A
Shapiro-Wilk test showed that the IBI values is not normally dis-
tributed (p < 0.05). As we compare four matched groups within
participants, we performed a Friedman rank sum test and found no
significant differences on the IBI values (χ2(3) = 3.902,p = 0.272).

3.4.6 Subjective Feedback. For real-time annotation while watch-
ing 360◦ videos, most participants (88%) stated they could easily
manage both annotating and watching simultaneously. When asked
about their technique preference, 13 participants (41%) preferred
14https://support.empatica.com/hc/en-us/articles/360030058011-E4-data-IBI-
expected-signal; last retrieved: 22.12.2020

https://support.empatica.com/hc/en-us/articles/360030058011-E4-data-IBI-expected-signal
https://support.empatica.com/hc/en-us/articles/360030058011-E4-data-IBI-expected-signal
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HaloLight, while the rest (47%) preferred DotSize. Eight participants
(53%) felt that HaloLight took up too much space and interfered
with their viewing experience. P4 and P14 reflected that the prefer-
ence of video content affects their preference for the visualization.
P4 stated “the first video I annotated with light is skiing, causing
heavy sickness, and I don’t like such sports. But for the dot, the first
video is doggy, which is very cute. It makes me happy. So I prefer
DotSize". Also, P2 mentioned that she liked DotSize because she
was more familiar with the annotation task in the second block, so
had a better impression due to order effects. Four participants (12%)
did not have preference, among which P32 expressed “it would be
better if it was a combination of circle dot and transparency change".

3.5 Discussion: Usability of RCEA-360VR
We found average SSQ scores to be quite low compared to previous
studies on watching 360◦ video studies [92]. Specifically, we found
no significant differences among our three conditions: pre-study,
HaloLight and DotSize. This leads us to conclude that RCEA-360VR
in general does not lead to heavy motion sickness. However, as we
later mention in our limitations (Sec 5.1), this could be due to the
overall shorter video, non-rapid cameramovement, and swivel chair
seating. Furthermore, we found no significant differences between
HaloLight and DotSize regarding participants’ perceived sense of
presence, where scores are comparable with prior work that show
good IPQ scores for 3DoF media [99]. Krüger et al. [54] found that
filling in discrete ratings inside VR is faster than doing so outside
(which also reduces breaks in presence), while Schwind et al. [87]
found that while presence did not significantly differ in or outside
VR, the consistency of variance did. Furthermore, this lends support
to Putze et al.’s [80] findings that administering questionnaires in
VR can reduce breaks in presence and avoid biases. In our case,
we collected users’ SAM rating elicited by 360◦ videos through a
custom-developed within-VR SAM rating method, which allows
users to give responses within the virtual environment. Different
from EmojiGrid [102], we embed the entire SAM images in the
panel and allow gaze-based selection, which we find more intuitive
(though this can be tested further).

For mental workload, we do not find significant differences nei-
ther from NASA-TLX nor physiological measures (PD, EDA and
IBI) between HaloLight, DotSize and the within-VR SAM question-
naire. The NASA-TLX scores were lower than what Zhang et al.
[114] found for annotating on mobile devices. This indicates that
compared with post-stimuli SAM ratings, our RCEA-360VR tech-
niques HaloLight and DotSize do not increase mental workload.
A cautionary note with respect to resulting PD values, is that we
find HaloLight, DotSize and Within-VR SAM are significantly dif-
ferent from None. As Pfleging et al. [79] and Zhu et al. [116] stated,
people’s PD values are also affected by the intensity of ambient
light and values will be higher in a darker environment. Given that
in the None condition the scene presented in the HMD was black,
it is not surprising that PD values in None are higher than the
other conditions. Furthermore, 78% of participants used the helper
function on average once per video, where there was no significant
differences between HaloLight and DotSize. This indicates that this
helper function is hardly necessary. Finally, our qualitative feed-
back reports lend support that both techniques were easy to use for

the dual task of watching and annotating. Together, our findings
indicate that our RCEA-360VR method is usable within immersive
360◦ video environments when compared with discrete within-VR
methods (RQ1a), where both the HaloLight and DotSize peripheral
visual feedback variants are effective in allowing the collection of
precise continuous emotion annotations (RQ1b).

Our resulting mean V-A values from continuous annotations
are in line with the labeled V-A ratings from the original Li et
al. dataset [56], which are additionally similar to our Annotation
Study ratings (Sec. 3.2.1). We found no significant differences (p >
0.05) among videos with the same valence/arousal type, and highly
significant differences (p < 0.001) among videos with the opposite
valence/arousal type. This provides a strong initial indication that
the continuous annotation of videos are similar to the original
labels.We also find that V-A are rated similarly across HaloLight and
DotSize. The within-VR SAM ratings and the continuous annotation
methods have a high degree of agreement, as well as the within-VR
SAM ratings with the original Li et al. labels (V: ICC = 0.982,p <
0.05; A: ICC = 0.941,p < 0.05). Furthermore, agreement between
our within-VR SAM ratings and continuous annotations for both
V-A in our experiment were higher than Voigt-Antons et al.’s [105]
work on a continuous emotion rating method involving clicking
on a point in a two-dimensional orthogonal grid in VR. These
indicate the reliability of our annotations, and therefore, in our
subsequent step (Sec. 4) of fusing annotations that consider users’
head movement behavior, we consider all the data across both
peripheral visualization methods.

4 GENERATING VIEWPORT-DEPENDENT
EMOTION GROUND TRUTH LABELS

To answer RQ2, and to ensure our annotations are effective for
building precise ground truth labels based on continuous ratings,
we develop a segment-level viewport-dependent annotation fusion
method. We aggregate multiple annotators’ decision to compute
the emotion ground truth [72]. In 360◦ videos however, users can
choose what content to view through head movement, so users’
continuous emotion annotations are necessarily driven by their
viewport. To address this, below we describe our method , which
comprises (1) continuous annotation time-alignment, (2) segment-
based viewport clustering, and finally (3) the viewport-dependent
annotation fusion. Source code for our method is available online
at https://github.com/cwi-dis/RCEA360VR-CHI2021.

4.1 Continuous Annotation Time-alignment
As Metallinou et al. [72] stated, there are time delays (e.g., due
to gender, age, distraction levels) between the occurrence of an
emotional event and its annotation, since continuous annotations
are performed in real-time. Thus, we follow Mariooryad et al.’s
[69] EvalDep method where they find the evaluator-dependent
lag by maximizing the mutual information between a reference
feature and the annotations. We follow a similar approach taking
into account the dynamic viewports. This involves three key steps:
(a) pick dominant feature as reference, (b) calculate time delay for
each annotation sequence, (c) shift the sequences to align.

Previous work has shown that reaction delays vary from one to
six seconds [69]. In our RCEA-360VR experiment (Section 3), we

https://github.com/cwi-dis/RCEA360VR-CHI2021
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Figure 6: Percentage of HM points in pitch (left) and yaw
(right) bins per video during the first six seconds.

Algorithm 1 Annotation Time delay

Input: The V-A ratings P ∈ R I×J , Pi j = [P 1
i j , P

2
i j · · · , P

M
ij ]; The color

feature CF ∈ R1×i , CFi = [CF 1
i , CF

2
i · · · , CF

N
i ]

Output: Each participant’s annotation time delay for each video D ∈ Ri×j

1: for j = 1 to J do
2: for i = 1 to I do
3: for τ = 1 to 6, step is 0.1 do
4: S_Pi j = [[P

1+τ ∗f ps i
i j , P 2+τ ∗f ps i

i j · · · , PN+τ ∗f ps ii j ]

5: Disτ = DTW (S_Pi j , CFi )
6: end for
7: Di j = arдmin(Dis)
8: end for
9: end for

ensured that all participants started watching the video from a fixed
center position. To verify how behavior differed during those early
seconds, we look at the pitch angle distribution of Head Movements
(HM) for all 32 participants. We found that the watching areas lie
between -30◦ and 30◦ for more than 98% of the first six seconds
for all videos, and more than 90% of the time for yaw areas falling
within -60◦ and 60◦ (shown in Figure 6). Thus, to select a suitable
reference, we considered commonly used methods to extract visual
features related to color, texture and edge [115] from the specific
region ([-30◦, 30◦] for pitch, [-60◦, 60◦] for yaw) of the first six
seconds of each video frame.

SupposeCFi is the color feature extracted by color moment [97]
from video i ∈ [1, I ], CFi = [CF 1i ,CF

2
i · · ·CF

N
i ], I is the number of

videos and N is the the number of frames in the first six seconds of
video i . Similarly,TFi is the texture feature extracted by Gray-Level
Co-occurrence Matrix (GLCM) [42], and EFi is the edge feature
extracted by Canny Operator [15]. Since visual feature sequences
are not normally distributed (p < 0.05), we calculated the spearman
correlation between CFi , TFi , EFi and each participant’s original
continuous valence/arousal sequence separately. The results show
that the color features across all videos have the highest Spear-
man correlations with both valence (ρ range: 0.2-0.6) and arousal
sequences (ρ range: 0.2-0.6). As a result, we select color features
as reference for subsequent time alignment. The pseudocode to
calculate the annotation delay time is shown in Algorithm 1.

Suppose Pi j is the annotation (valence or arousal) from partici-
pant j ∈ [1, J ] watching video i ∈ [1, I ], Pi j = [P1i j , P

2
i j · · · P

M
ij ], Di j

is the annotation delay time from participant j ∈ [1, J ] watching

video i ∈ [1, I ] and f psi is the number of frames per second for
video i . J and M are the number of participants and frames for
video i respectively. We shift a sliding window with a duration of
six seconds and step size of 0.1s (same as our joystick sampling rate;
Section 3.2.4) on Pi j , denoted as S_Pi j , and the starting position
is from the first to the sixth second. Lastly, Dynamic time warp-
ing (DTW) [85], one of the most prominent methods in similarity
measures for time series data [29], is used to calculate similarity be-
tween S_Pi j and CFi . We get the shifted sequence with the highest
similarity and the corresponding τ is recorded as the annotation
time delay Di j . Finally, we shift annotations from participant i
watching video j based on Di j and obtain the aligned annotation
sequences. Time shifts (in seconds) across videos for valence rat-
ing ranges were [1.478, 3.944] (M = 3.186, SD = 0.809), and for
arousal [1.969, 3.506] (M = 2.909, SD = 0.614). Computing time
shifts across participants results in valence rating series ranges of
[1.975, 4.638] (M = 3.186, SD = 0.751) and for arousal [1.625, 3.85]
(M = 2.909, SD = 0.553). Our findings lend support to prior work
[69] that showed ranges between 1-6s.

4.2 Segment-based Viewport Clustering
In the second step, we clustered users based on similarities in their
viewing behavior. The HM data from every participant while watch-
ing 360◦ videos was used as input to find a group of similar users.
We segment every video at 1s intervals according to test settings in
[110], then the HM data in each segment from all the participants
are collected to run hierarchical clustering [48]. We use dynamic
hierarchical clustering to be able dynamically adjust the number
of clusters, by contrast with methods (e.g., k-means) that require
pre-specifying clusters in advance [98]. We dynamically adjust the
convergence distance of hierarchical clustering to guarantee that
the biggest cluster includes more than 80% of the HM points in one
segmentation. Figure 7a shows the dendrogram of the hierarchical
clustering of V1’s segment 1 and Figure 7b presents a saliency map
for this segment. From Figure 7c, we can see that (a) more than 50%
of participants are in the selected cluster, (b) 80% of the segments’
majority cluster contain at least 18 users, and (c) the number of
users in the majority cluster of the segments are identical for all
the videos except V5.

4.3 Annotation Fusion
Lastly, we develop a fusionmethod to robustly fusemultiple viewport-
dependent annotations into a single set of continuous emotion
ground truth labels. This involves two steps: (a) frame-level fusion,
and (b) segment-level fusion. This two-step fusion approach is nec-
essary to discard the annotation outliers at the frame level, and
fuse annotations of each frame according to the percentage of view-
points clustered in each segment. Pseudocode for our annotation
fusion method is shown in Algorithm 2, where our fusion results
for 8 videos with four emotion types are shown in Figure 8.

Suppose Pi j is the annotation (valence or arousal) from partici-
pant i ∈ [1, I ] at segment j ∈ [1, J ], Pi j = [P1i j , P

2
i j · · · P

N
ij ]. I and J

are the number of participants and segments, respectively. N is the
number of sampling points in one segment of annotation. The anno-
tation from multiple participants is first fused in each frame using
Bayesian fusion [114]. Following [64, 66], the confidence measure
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Figure 7: (a) Hierarchical clustering for segment 1 in V1. (b) Heat saliency map for segment 1 in V1. (c) CDF for hierarchical
clustering of 32 participants’ viewing behavior.

Algorithm 2 Viewport-dependent Annotation Fusion

Input: The V-A ratings P ∈ R I×J for one video Pi j = [P 1
i j , P

2
i j · · · , P

N
i j ]

Output: Fused V-A ratings for one video F ∈ R1×j

1: for j = 1 to J do
2: for n = 1 to N do
3: for i = 1 to I do
4: Dn of Pni j using Eq. 1
5: end for
6: X j ← delete Pni j in Pj which d

n
lm > T

7: fn ← fuse X j using 2
8: end for
9: Fj =

∑N
n=1

Hn∑N
p=1 Hp

fn

10: end for

matrix is Di j, where dnlm ∈ D
n for frame n ∈ [1,N ] by:

dnlm = er f (
xl − xm
√
2σl

), dnml = er f (
xm − xl
√
2σm

) (1)

wherexm andxl are annotations for participantm and l respectively.
σm and σl are the standard deviation of the annotation for partic-
ipantm and l respectively in one segment. er f (θ ) = 2

π

∫ 0
θ e−u

2
is

the error function. Then the outliers for the annotations of frame n
are removed by setting a threshold (T = 0.2) of dlm . Suppose the an-
notation after outlier elimination is X j = [x1,x2, . . . ,xK ],K ≤ 20,
the fusion results of frame n can be calculated as follows:

fn =
K∑
k=1
(1 −

∑
D j
k∑

D j ) · xk (2)

where D j
k represents the k column of D j . We calculate the frame

level fusion result f = [f1, f2, . . . , fN ] for all frame n ∈ [1,N ] in
one segment. Then the annotation for segment j is obtained by
using the weighted average of f :

Fj =
N∑
n=1

Hn∑N
p=1 Hp

fn (3)

where Hn is the number of viewpoints at frame n. We then
calculate the fusion for all segments j ∈ [1, J ] to get the fused
annotation of a video. Ratings are fused independently here since
V-A are orthogonal (independent) variables.

4.4 Analysis: Viewport-dependent Fused
Emotion Annotations

To test the consistency of fused continuous V-A ratings, essen-
tially how effective they are, we implement a temporal analysis
of each video annotation result. Suppose Ai j is the fused arousal
value of video i, i ∈ [1, I ], segmentation j, j ∈ [1, J ]. If 50% of
the [Ai1,Ai2 · · ·Ai J ] have low (1-5) or high [5-9) arousal value
(cf., [114]), the overall predicted (i.e., classified) arousal for video i
equals to the corresponding low/high label. The predicted valence
for all eight videos are similarly calculated. We find that our fused
V-A ratings can classify/predict both the original Li et al. [56] labels
as well as our within-VR SAM ratings each with 100% classification
accuracy.

4.4.1 Temporal Lens into Emotion States. The strength of ourmethod
lies in enabling a more fine-grained temporal lens by which to un-
derstand emotion states and specific scenes of an immersive 360◦
viewing experience. Here, we discuss two examples: (1) V8 is a short
film on the effects of an earthquake. Around the 10th second of the
video, it depicts the general scene after the earthquake, and partici-
pants’ valence level changes smoothly. While at the 46th second,
there is a big box suddenly dropping from the roof with a lot of dust,
and the valence level of the fusion result is apparently lower from
3.15 to 1.92 from Figure 8 (left), despite the overall valence rating.
(2) Around the 36th of V7, a prison guard was leading a criminal
to the door, and suddenly, the suspect broke free and turned to
escape. We could see the arousal level increased rapidly from 5.02
to 7.02 from Figure 8 (right). We see similar fluctuations in arousal
for V1 and V5. These examples show how our fused annotations
can provide temporal details into the peaks, valleys, and trends of
viewers’ experience. Short example videos and processing scripts to
overlay viewport-dependent V-A labels on 360◦ videos are available
at https://github.com/cwi-dis/RCEA360VR-CHI2021.

5 DISCUSSION
5.1 Limitations and Future Work
There were some limitations to our work. First, we did not test
longer video durations (>1 min), as they result in higher motion
sickness and workload, even though longer videos may be more im-
mersive [39, 51]. Second, we do not test RCEA-360VR in scenarios

https://github.com/cwi-dis/RCEA360VR-CHI2021
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Figure 8: Fused valence (left) and arousal (right) annotations across eight videos with different intended V-A labels.

where users can walk in world-scale virtual worlds [5, 55]. If users
walk freely, it may be difficult using an auxiliary joystick to report
emotions in real time. Third, we did not look at eye movement
patterns, even though prior work [91, 100] has shown correlations
between emotions and eye movements. This was beyond the cur-
rent scope, and we aim to investigate this in future work. Fourth,
we focus strictly on the Circumplex emotion model [45, 89] and
within-VR SAM ratings [10], and do not test different dimensional
models (e.g. vector models [9] or PANAS [107]) nor other discrete
methods (e.g. AffectButton [14]). This was done since both Circum-
plex and SAM are widely used methods [37], and have exhibited
good usability in prior studies. Fifth, our peripheral feedback used
Itten’s color system [96] due to ease of use and standardization
based on prior work, however this excludes color-impaired indi-
viduals, where future work should consider accessibility to ensure
widespread adoption. Furthemore, we fixed the feedback visual-
ization on the right-bottom corner as this was deemed suitable
in prior work [112], however future RCEA-360VR versions would
benefit users when ensuring a more accessible and customizable
design. Finally, we did not specifically measure humidity levels of
our experiment room, nor caffeine and medication usage of our
participants, so one should interpret our observed EDA changes
cautiously.

5.2 Collecting Momentary Emotion
Self-Reports in 360◦ VR Environments

It is now widely agreed that VR environments have the capacity to
evoke a range of emotions in humans [28, 31, 76, 78]. Considering
prior work in emotion sensing and recognition, it can be asked why
we need to resort to seemingly cumbersome self-report collections,
especially while immersed in virtual space. Specifically, why not
simply track facial expressions and speech [2, 69, 94] alongside con-
tinuous annotations? In such virtual settings where currently users
wear relatively bulky HMDs, nearly half the users’ face is covered,
and even if for example a smile can be captured, the rotation in head
movements would pose issues for camera-based tracking. Further-
more, while previous work has tracked valence and arousal from
speech signals during social VR experiences [57], in our case track-
ing speech would not be feasible as it requires users to be speaking
throughout an otherwise private experience. Furthermore, when
it comes to emotion research, as Barrett et al. [4] states, in the

absence of an objective, external way to measure emotional expe-
rience (especially when facial expressions can indicate more than
one emotion, or be altogether misleading about emotional state),
we can only examine emotions through self-reports. In this respect,
irrespective of automatic affect sensing, we still need self-reports as
ground-truth, and ideally in the moment of the experience, rather
than retrospectively (whether inside or outside VR).

However collecting self-reports in a momentary and precise
manner poses challenges for users’ divided attention (cf., Wicken’s
Multiple Resource theory [108]). This required us to leverage easy
to use auxiliary devices and peripheral annotation feedback that
to lower demand on users’ attentional resources. As a result, we
considered certain design measures (ergonomics design principle
P3): for input, we used a Joy-Con wireless controller, which is light-
weight and highly sensitive to positional shifts. The return spring
on the joystick provides proprioceptive feedback which facilitates
realigning to center position under no force, making it suitable
for continuous annotation (cf., [88]) while wearing an HMD and
immersed in video content. For output or peripheral feedback, we
drew on peripheral visual interaction techniques, where research
has shown that information presented to the periphery of users’
visual attention (peripheral displays) can help participants quickly
and effectively understand information while performing other
primary tasks [3, 71]. This leads us to consider both HaloLight
and DotSize as visualization methods. Drawing on physiological
(PD, EDA, IBI) and subjective measures of workload (NASA-TLX),
presence (IPQ), and motion sickness (SSQ), we collected what we
believe to be sufficient evidence to enable a class of annotation
techniques that leverage user peripheral attention under immer-
sive 360◦ VR experiences, without drastically disrupting the user
experience or creating discomfort. Despite the foregoing, since our
work focused on 360◦ video, we further consider the need for a
new class of emotion annotation techniques, given interactive (incl.
locomotion) and highly immersive qualities of virtual worlds, as
well as interactive 360◦ videos. In such interactive and world-scale
scenarios, it may be difficult to simultaneously annotate one’s emo-
tion and interact with a virtual environment or with video content,
and poses challenges for capturing cross-user viewport regularities.
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5.3 Viewport-dependency and Fusing
Fine-Grained Emotion Labels

Unlike 2D video watching, if user annotations are performed under
continuously changing viewports, this creates uncertainty that the
annotations pertain to that specific scene at any given point in
time. This necessitates methods that consider similarities in view-
ing behavior. While existing techniques enable greater uniformity
in viewing behavior (e.g., looping video textures under a gazed at
region of interest [60]), or provide on-display guidance cues for
where to look (e.g., Halo- and WedgeVR [36]), our goal was to al-
low as much viewing freedom as possible without manipulating
video content. In this respect, our showed how RCEA-360VR takes
advantage of regularities in head movement patterns (cf., [82]) to
ensure effective fused annotations (RQ2). For human-computer in-
teraction and emotion computing researchers, this unlocks greater
insight into the temporal nature of reported emotion across videos
(cf., Sec 4.4.1) during immersive 360◦ VR experiences. Similarly, it
enables building more temporally precise labels for training emo-
tion recognition systems [6, 94, 114] that can perform predictions
at a more fine-grained level.

However, what if we do not witness regularity in headmovement
behavior across viewed 360◦ video content? In our study, we fixed
users’ video watching start position from the same central position.
However, calibration of starting point in real-world settings can be
more complex (cf., [93]), which may cause too much divergence
for navigation patterns. In this respect, our viewport-dependent
fusion method can be heavily influenced by the type of content.
This raises an issue: if the viewport-dependent clustering result
contains two or more dominant clusters, then we may end up with
more than one set of fused annotations per cluster. In the extreme
case of too many clusters, then perhaps we should go towards
personalized individual viewing patterns of emotion analysis and
explore the relationship between different starting points and view-
port clustering results. Essentially, this impacts whether we are
able to develop subject-independent emotion recognition models
[22, 53]. An implication of this is that content creators may need
to define visual saliency cues [58, 95] to help guide users towards
focal points, which would improve segment clustering and allow
meaningful viewport-dependent annotations. Interestingly, recent
work by Jun et al. [49] showed in a large scale study (N=511), that
the preferable 360◦ videos, which were likely to have attention
grabbing focal points, were overall less explored by participants.
This lends credence to the effectiveness of our method, should it be
be used for in the wild data collection.

6 CONCLUSION
We presented a real-time, continuous emotion annotation system
for 360◦ VR videos (RCEA-360VR). Our system comprises two pe-
ripheral visualization techniques, HaloLight and DotSize, that allow
annotators to see in their visual periphery which emotion state
(as valence and arousal) they are annotating. Our system enables
researchers to collect fine-grained emotion annotations of valence
and arousal while watching 360◦ videos, as well as within-VR SAM
ratings. Through our controlled usability evaluation, we found no
significant differences between HaloLight and DotSize concern-
ing motion sickness, presence, or mental workload. Furthermore,

both techniques do not result in high sickness, workload, nor break
presence. RCEA-360VR also performs as well as retrospective, dis-
crete rating methods, where we verified the reliability of our con-
tinuous annotations. Finally, we proposed a viewport-dependent
fusion method to aggregate annotations based on 360◦ viewing
behavior (available athttps://github.com/cwi-dis/RCEA360VR-
CHI2021). Our work enables further research on capturing mo-
mentary emotion annotations in 360◦ VR, which is essential for
collecting precise viewport-dependent ground truth labels.
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