DeepSleep

A Ballistocardiographic-based Deep Learning Approach for **Classifying Sleep Stages**

Shashank Rao *², **Abdallah El Ali** *, Pablo Cesar *²

★ Centrum Wiskunde & Informatica, ² TU Delft

How can a sleep classification system be modelled using Ballistocardiographic (BCG) sensor data, and achieve a performance comparable with Polysomnography (PSG)?

- PSG considered most accurate method for diagnosing sleep-related problems
- However, it is expensive, complex, time-consuming, and uncomfortable for users
- We propose a transfer learning approach using BCG data

Collecting BCGbased heart sensor signals

- 51 recordings, 25 subjects
- Training = 41; Validation = 7; Test = 3
- Ground truth annotated by 2 doctors from NIMHANS [1]
- Cohen's kappa, k = 0.80

SATED questionnaire for perceived sleep quality

Measuring sleep quality

- SATED: <u>Satisfaction</u>, <u>Alertness</u>, <u>Timing</u>, <u>Efficiency</u>, <u>D</u>uration
- 16 subjects
- Scores recorded 1hr and 24 hr after PSG recording

Objective sleep quality

REM (min) + NREM (min) – Awakening (min) SQ =Total Sleep (min)

Fine-tuning accuracy and loss

Dataset comparisons

0, 1	TZ O C	01	A

Sleep classification performance

Study	Tear	sensor type	#realures	Classifier	Classes	Accuracy
Längkvist et al. [50]	2012	EEG, EOG, EMG	1	DBN, HMM	W, REM, NREM, L	72%
Samy et al. [72]	2014	BCG	6	KNN, SVM, Naive-Bayes	W, L, REM, Deep (NREM)	72%
Supratak et al. [77]	2017	EEG	1	1D-CNN + LSTM	W, REM, NREM, L	86%
Dong et al. [24]	2018	EEG, EOG	1	LSTM	W, REM, NREM, L	86%
Chambon et al. [13]	2018	EEG, EOG, EMG	1	1D-CNN	W, REN, NREM, L	87%
DeepSleep (proposed)	2018	BCG	1	1D-CNN + bi-LSTM	W, L, REM, Deep (NREM)	74%

Performance comparison between *DeepSleep* model and prior works that perform 4-class classification.

Dataset	Sensor type	#Features	#Recordings	Accuracy
Dozee BCG	BCG	1	51	74%
Dozee ECG	ECG	1	51	77%
MIT-BIH	ECG	1	80	82%
Fitbit-PPG	PPG	1	12	63%

Performance of DeepSleep model on different datasets and sensor types

NIMHANS - National Institute of Mental Health and Sciences

Abdallah El Ali

www.abdoelali.com

abdallah.elali@gmail.com

Shashank Rao, Abdallah El Ali, and Pablo Cesar. DeepSleep: A Ballistocardiographic-based Deep Learning Approach for Classifying Sleep Stages. In UbiComp 2019.

TUDelft CWL

Wake 0.0 REM Wake Light Deep Actual stages

Conclusion

- Model identifies onset and period of sleep stages
- Differentiates between REM & Deep
- Avg. F1-score: 74%
- Avg. F1-score: 82% on ECG data (transfer learning)
- Positive correlation with PSG (r = 0.48) and SATED (r = 0.43), whereas r=0.54between SATED and PSG

Future work

- Leave-one-out cross-validation
- Compare with non-NN approaches
- Better oversampling (e.g.,
- Seq2seq)
- Multimodal learning