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Abstract—During group interactions, we react and modulate our emotions and behaviour to the group through phenomena including
emotion contagion and physiological synchrony. Previous work on emotion recognition through video/image has shown that group
context information improves the classification performance. However, when using physiological data, literature mostly focuses on
intrapersonal models that leave-out group information, while interpersonal models are unexplored. This paper introduces a new
interpersonal Weighted Group Synchrony approach, which relies on Electrodermal Activity (EDA) and Heart-Rate Variability (HRV). We
perform an analysis of synchrony metrics applied across diverse data representations (EDA and HRV morphology and features,
recurrence plot, spectrogram), to identify which metrics and modalities better characterise physiological synchrony for emotion
recognition. We explored two datasets (AMIGOS and K-EmoCon), covering different group sizes (4 vs dyad) and group-based activities
(video-watching vs conversation). The experimental results show that integrating group information improves arousal and valence
classification, across all datasets, with the exception of K-EmoCon on valence. The proposed method was able to attain mean M-F1 of
≈ 72.15% arousal and 81.16% valence for AMIGOS, and M-F1 of ≈ 52.63% arousal, 65.09% valence for K-EmoCon, surpassing
previous work results for K-EmoCon on arousal, and providing a new baseline on AMIGOS for long-videos.

Index Terms—Emotion Recognition, Physiological Synchrony, Physiological Signals, Machine Learning, Deep Learning, Group
Emotion.

✦

1 INTRODUCTION

HUMANS are social beings, spending a large amount of
time in collective activities, either at work, for leisure

or at home [1]. In such contexts, our emotions are adapted
to the group and its members [2], [3]. A group can be
considered to be any arrangement from a small cluster of
two individuals to thousands of people in physical presence
or with the ability to interact [4]. The literature on collec-
tive emotions [2], [3] reports that during social contexts
(e.g. face-to-face encounters or public gatherings) a ”macro-
level affective process” denoted as collective emotions can
emerge. During this process, the dynamics among group
members can lead to phenomena such as ”emotional cas-
cades”, ”emotional contagion” or ”collective effervescence”
[2], [3]. Thus, group behaviour is a component that should
be analysed when performing emotion assessment.

Group emotion recognition using audiovisual sources is
vastly explored, largely motivated by challenges such as the
Emotion Recognition in the Wild (EmotiW), which focused
on group emotion analysis using images ( [5] in 2018),
and audio and video ( [6] in 2020). Within this challenge,
hybrid approaches – combining information from both the
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individual-level emotion and environment context – have
shown to result in overall higher accuracy and have become
the predominant approach. However, these approaches are
mostly tested for images/video, which focused on overt
(visible) behavioural features, and not on physiological
signals which are associated with the autonomic nervous
system [7].

The literature on collective emotions [8] reports that
in group scenarios, individuals have shown spontaneous
and unintended similarities in their physiological and be-
havioural responses [9] – a phenomena denoted as physio-
logical synchrony [10], i.e. the inter-dependency or temporal
interaction between the physiological data of two or more
individuals.

To define emotional experiences, we follow the approach
by [11], [12], [13], which relies on a “consensual, com-
ponential theory of emotion” [11]. In this approach, an
emotional response involves subject experience, physiology
(peripheral and central nervous system), and a behavioural
component, each of these systems being associated with a
discrete pattern. We perform emotion recognition based on
peripheral physiology patterns as all current major theories
of emotion consider physiological responses to be a com-
ponent of emotion [12], and rely on arousal and valence
dimensions from the dimension theory of emotion and
core affect to characterize emotional states. Physiological
synchrony has been identified in numerous works through
peripheral data across different types of relations, such as
parent-child, couples, therapist-client, or social interactions
[14], [15]. However, there is a gap in the use of unobtru-
sive physiological signals for emotion recognition exploring
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group interactions, which is the open problem addressed by
our work.

Physiological data reflects emotional state changes as a
result of the Autonomic Nervous System (ANS) activity due
to endogenous and exogenous conditions [16]. The ANS ac-
tivity can be assessed through physiological measures such
as Electrodermal Activity (EDA), related with the Sympathetic
Nervous System (SNS), or Heart Rate Variability (HRV), re-
lated with both the SNS and Parasympathetic Nervous System
(PNS). The use of EDA and HRV-related features shows
many advantages, such as: 1) high temporal and amplitude
resolution; 2) continuous and unobtrusive data collection
over long periods of time in daily living; and 3) have been
proven to be an insightful view into the subject emotions
[17]. However, when compared to audiovisual content, the
field of emotion recognition using physiological data has
mostly focused on intrapersonal emotion assessment [17],
[18], disregarding group-related phenomena such as emo-
tion contagion and physiological synchrony.

We fill this gap by proposing a novel methodology that
explores physiological synchrony, by performing a weighted
average of the groups’ emotion class labels to predict the
label of an unknown subject. The weights are given by
the physiological synchrony between the unknown subject
and each member of the group. Throughout our work, we
address the following research questions:

• RQ1: What synchronisation metrics and data repre-
sentations are most suitable for measuring physio-
logical synchrony for emotion recognition?

• RQ2: Does the emotion classification accuracy im-
prove with the inclusion of group-level information?

In this work, we address these research questions and
fill the gap identified in the state of the art regarding group
emotion recognition based on unobtrusive physiological
data (EDA and HRV). Moreover, we study the potential
to improve the accuracy of emotion recognition systems
by integrating group context information through a novel
metric combining weighted group physiological synchrony.

The remainder of this paper is organised as follows:
In Section 2 we describe the background and literature on
interpersonal emotion recognition. Section 3 describes the
overall pipeline of the proposed methodology. In Section
4, we evaluate our methodology against two datasets ob-
tained across different group settings. Lastly, in Section 5,
we present our main conclusions along with future work
directions.

2 BACKGROUND

2.1 Group Emotion Recognition

The use of the group context has been successfully em-
ployed for emotion recognition in the field of audiovisual
content analysis [19], namely through hybrid and top-down
approaches [20], [21]. In these approaches, in addition to
the subjects’ facial expressions, they rely on information
from the global scene, skeleton features, and visual attention
mechanisms applied to the entire image. These global input
sources are combined to perform the emotion classification
tasks. Similarly, in the field of emotion recognition from

speech, group information has also been taken into consid-
eration, namely in dyad conversations [19], [22].

In [19], the authors apply a Support Vector Machine (SVM)
to predict the listener/speaker emotion by using the facial
features and the emotion prediction of the speaker/listener
using a SVM over the listener acoustic features. The classi-
fication improved when including cross-subject features. In
[23], the authors analyse whether the emotional reaction of
one individual can be assessed by the emotional response of
their partner, in a dyad cooperation task, exploring physio-
logical and speech data. The models were trained to predict
emotional and non-emotional moments using a linear SVM
and a Random Forest classifier. The results showed that the
emotion classification performance increases when combin-
ing information from the two subjects.

In [22], the authors incorporate time-lagged Cosine sim-
ilarity features on a latent representation from an adapted
ResNet architecture performing emotion recognition dur-
ing dyad conversations using video and audio data. The
experimental results showed that the interpersonal method
outperformed the model based on individual features only.

The aforementioned works confirm the success of ap-
plying group information for emotion assessment, however,
they are based on audio-visual or speech features and fo-
cus mostly on dyads. The study of interpersonal features
extracted from physiological data in groups larger than two
was only found in the work by [18]. In [18], the authors
assess the individual’s multi-label categorical emotional
state using speech and Photoplethysmography (PPG) during
group tasks used as input to a transformer encoder block
with positional encoding, followed by a bi-Long Short-Term
Memory (LSTM) model. The method takes into consideration
the group atmosphere given by the aggregation of each
group-member score in a Self-supervised Graph Attention
Networks (SuperGAT), surpassing all the baseline methods
in the NTUBA dataset [24]. The literature lacks further
validation as it was only tested for a few datasets/use cases
(e.g. of three-person small group conversations in [24]).
Additionally, the latter work relies on external displays of
affection (speech) and does not explore alternative similarity
metrics to Cosine similarity.

The review of the literature shows that the integration
of group information in emotion classification tasks can
improve the classification performance, namely in audiovi-
sual and dyad conversations. Collective emotion recognition
based on physiological data is still largely unexplored, and
there is a lack of information regarding which synchronisa-
tion metrics and data representations better describe phys-
iological synchrony, and whether they are replicable across
different group-related activities (i.e. conversation versus
watching a movie). In this paper, we address each of these
issues by: 1) proposing a novel approach integrating group
context for emotion recognition using physiological data
collected unobtrusively; 2) performing a diverse analysis
of physiological measures and data representations; and 3)
applying our method across two datasets acquired under
different group use cases.

2.2 Metrics for Physiological Synchrony
In the literature, a broad range of physiological signals have
been used to analyse physiological synchrony including
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[16]: cardiovascular (e.g. Electrocardiography (ECG), PPG and
HRV-related); respiratory (e.g. respiratory rate, respiratory
volume time); electrodermal activity (e.g. Electrodermal Re-
sponse (EDR), Electrodermal Level (EDL)); and thermal (e.g.
skin temperature). In this work, we follow the approach
adopted by [16] and focus on physiological signals aligned
with the physiological constructs of interpersonal synchro-
nisation. Furthermore, we focus on signals that can be
obtained unobtrusively and continuously from a group, and
that have low latency so that they can be applied in real-
time and in daily living. Our selected signals are the EDA
and cardiovascular activity namely, HRV.

In a survey analysing over 61 works [16], the authors
report high ambiguity in using EDA to assess physiolog-
ical synchrony, with many papers identifying synchrony
in dyads both using skin conductance [25], and response
[26], while others not (in skin conductance) [27]. Similar
findings are obtained for inter-group analysis, with [28]
identifying synchronisation even between strangers, unlike
the authors in [29]. Although the experimental results are
not definite, there is evidence of physiologically-related
synchrony through EDA measures [15].

Cardiovascular activity can be assessed through Heart
Rate (HR) [30], [31], inter-beat interval [32], [33], HRV-
related features [33], [34]. Similarly to the EDA signal, there
is still little consensus in the literature. Physiological syn-
chrony is identified in dyad conversations through differen-
tial equations in [35], audience members and dancers [36]
in R-peaks through regression. The opposite is described
in [37], where no synchrony was identified in groups of 10
individuals at rest and listening to music. For a more de-
tailed description of the works and findings in the literature
pertaining physiological synchrony and related areas, we
refer the reader to [16].

Overall, although the literature on physiological syn-
chrony is unclear due to factors such as the diversity of
signal sources, analysis metrics, protocol setups, or also
likely due to the task itself or activity that was studied,
numerous papers confirm the existence of physiological
synchrony in EDA and HRV [16], [35].

2.3 Datasets

The literature [8] reports that group dynamics such as emo-
tion contagion can occur even without face-to-face interac-
tions or non-verbal clues (e.g. social media). Nummenmaa
et al. [38] describe five types of physiological synchrony
in groups: a) independent units (group sharing physical
presence but in independent tasks); b) externally driven
(e.g. group watching a movie); c) leader-follower/sequential
interaction (e.g. meeting); d) dynamic interaction (e.g. con-
versation); and e) group interaction (e.g. group cooperative
tasks) [39].

In this article, we perform an analysis of two of these
conditions (dynamic interaction in dyad conversation; and
externally driven by video watching) by using different
datasets. The datasets were selected according to the follow-
ing requirements: 1) contain group data (≥ 2 individuals);
2) contain unobtrusive physiological data, namely EDA and
cardiovascular data; and 3) are continuously annotated in
terms of arousal and valence for long-duration naturalistic

scenarios (i.e. ≥ 10 minutes) to elicit group-emotion related
phenomena.

The selected datasets were AMIGOS and K-EmoCon.
AMIGOS [40] contains physiological (EDA, ECG, Electroen-
cephalography (EEG)) and audio-visual (face and full-body
video) data collected both in groups (4 individuals) and
individual settings. The dataset includes data from 37 sub-
jects watching 4 long videos (> 14 minutes) and 16 short-
video clips (< 4 minutes). The data was continuously an-
notated ∈ [-1, 1] in valence/arousal by 3 experts at 20-
second intervals. Data from the short-videos experiment,
which was acquired only individually was removed. K-
EmoCon [41] contains physiological (EDA, PPG, EEG), and
audiovisual (face, gesture, speech) data collected during
naturalistic dyad conversations, namely a debate on social
issues. The dataset contains 16 sessions of approximately
10 minutes each. The data was annotated by self-report,
debate partner, and external annotator in a [1, 5] scale at
5 seconds intervals, both using a valence/arousal space and
18 categorical emotions.

Herein, we use the external annotations to maintain the
coherency between the two datasets. A summary descrip-
tion of the datasets is shown in Table 1. The labels were
divided in binary classification, taking -1: < 0; 1: >= 0 for
valence and -1: <= 0; 1: > 0 for arousal.

TABLE 1: Datasets’ labels summary. A: Arousal; V: Valence.
Group Homogeneity refers to the % of samples in which
all members in the group (except the unknown subject)
have equal class labels. A sample size of 20 seconds was
considered for both datasets.

Label AMIGOS K-EmoCon
A V A V

-1 81.12 71.23 80.67 08.08
1 18.88 28.76 19.32 91.92
Num. samples 43327 3192
Group Homogeneity 70.50 ± 7.10 69.19 ± 7.40

3 METHODOLOGY

We denote our proposed approach as Weighted Group Syn-
chrony (WGS), described in Equation 1. In a group context
of N subjects, the label of an unknown subject (ŷs) is given
by the weighted average of the remaining group members’
labels:

ŷs =
N−1∑
i=1

W iyi (1)

Where W are the weights denoting the synchronisation
between the unknown individual s and each of the remain-
ing group-member i. The physiological synchronisation is
given by:

W i = S(hi, hs) (2)

Where h is the data representation and S is the similarity
metric used to obtain the synchronisation between two sub-
jects. When the similarity metric returns a distance instead
of correlation, it is converted by S = 1

1+distance . The ŷs
∈ {−1, 1}, consists of a binary problem. When a negative
correlation occurs, the subject s is given the opposite label
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Fig. 1: Pipeline of the implemented methodologies. The squares in orange refer to alternative pathways. The IA and IB paths
refer to two alternatives for the input formats: with and without crossing a neural network. The MA and MB pathways
refer to the application of interpersonal and intrapersonal models, respectively. When applying MA (interpersonal model),
we tested both a weighted and non-weighted (average pooling) approach. For the intra-personal model, the application of
deep learning (DL) and machine learning (ML) was tested.

of subject i while, for a positive correlation, the label of the
subject i is given. Then, the assigned labels are added and
weighted by the synchronisation value of each subject for
the computation of the weighted average of the subject s
label. When the group consists of a dyad, W is always 1 or
−1, and the unknown subject is given the label of the other
member in case of a positive correlation, or the opposite
label for a negative and zero correlation.

3.1 Pipeline
An overview of our tested methods is shown in Fig. 1.
We start by testing two alternative inputs: The IA pathway,
where the EDA morphology (EDA, EDR and EDL signals),
EDA and HRV hand-crafted features, and images (EDA
spectrogram and recurrence plot) are used as input to a
neural network where a higher representation is learned to
compute the subjects’ emotion label in the MA or MB steps.
Alternatively, in path IB no latent representation is used
and the data inputs for the neural network (namely, EDA
morphology – EDL and EDR; and EDA and HRV hand-
crafted features) are used as input for the MA or MB steps
to obtain the subjects’ emotion label.

After the input representation is defined (IA vs IB), two
pathways are proposed, MA and MB, in which the inter-
personal and intrapersonal models are tested, respectively.
If the MA path is taken (interpersonal model), group syn-
chrony is performed where the subject emotion classification
is performed based on the synchronisation between the un-
known subject sample and the group members samples for
each timestamp (WGS method). The group synchronisation
method was tested in two pathways: weighted (CA) – where
a weight is given according to the synchronisation value;
and average pooling (CB) – where a non-weighted average
is performed so that the synchronisation metrics are not
considered.

If the MB path is selected (intrapersonal model), two
methods were tested: classification by classic machine learn-
ing algorithms (ML); or the implementation of a deep learn-
ing classifier (DL), using the feature extraction layer from the
IA path with the addition of a sigmoid activation function
to get a binary arousal/valence classification.

3.2 Synchronisation Metrics

To measure physiological synchrony, we considered a set
of seven synchronisation metrics following two criteria: 1)
The six physiological constructs of physiological synchrony
identified in [16] – magnitude, sign, direction, lag, timing
and arousal. Magnitude is determined through Pearson,
Cosine similarity and Euclidean distance. Sign is deter-
mined through Spearman correlation. Direction and Lag is
determined through Dynamic Time Warping (DTW). Arousal
is determined by using EDA data; and 2) Synchrony metrics
found in previous works on the study of physiological
synchrony confirming its existence in EDA and HRV.

1) Pearson Correlation ∈ [-1, 1]: measures the linear
correlation between two signals, from negatively
correlated to a perfect correlation. Pearson corre-
lation can be interpreted as synchronisation mag-
nitude, being one of the most commonly applied
metrics in the literature as shown by [42], [43].

2) Spearman Rank Correlation ∈ [-1, 1]: analyses the
rank-correlation between two signals, from nega-
tively correlated to a perfect correlation, enabling
the measurement of the synchrony sign value, i.e.
whether signals have the same or opposite dynam-
ics and is applied in [44], [45].

3) Cosine Similarity ∈ [-1, 1]: measures the nor-
malised inner product between two signals, and has
been used as a magnitude construct of physiological
synchrony in [18].

4) Euclidean Distance ∈ [0, +∞]: measures the
pythagorean distance between two signals and has
been used as a magnitude construct of synchrony in
[46].

5) Recurrence Plot, R6 ∈ [0, +∞]: The aforementioned
metrics are linear, fitting for stationary data with
constant mean and variance throughout time. How-
ever, physiological data is non-stationary and can
show temporal dependency [16]. Recurrence plots
allow the characterisation of temporal cyclic trends
in signals, by filling in the times in which a phase-
space trajectory is repeated. Recurrence plots can be
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found in the literature in [47], [48]. To compare dif-
ferent recurrence plots we extracted six recurrence
quantification analysis metrics: Recurrence rate, De-
terminism, Average diagonal line length, Longest
diagonal line length, Divergence and Entropy diag-
onal lines1.

6) DTW ∈ [0, +∞]: computes the distance between
two signals, but instead of calculating the vertical
Euclidean distance between the signals, calculates
the Euclidean distance across the smallest paths,
allowing a temporal synchronisation between the
signals. The DTW takes into consideration the tim-
ing and lag construct of synchronisation. DTW is
applied in [49], [50].

7) Cross-correlation ∈ [0, +∞]: takes into considera-
tion a lag parameter of physiological synchrony to
compute the time-shifted correlation between the
two signals. We do so by using SciPy correlate
function2 with mode equal to full, from which we
obtain the maximum value to identify the moment
of maximum synchrony.

8) Coherence (Spectral Correlation) ∈ [-1, 1]: consists
of Pearson correlation computed in the frequency
domain. The use of spectral metrics is described in
the literature to assess synchrony magnitude in [51],
[52].

By analysing such diverse similarity metrics that ex-
plore different characteristics of the data, our work further
expands the state-of-the-art of emotion recognition using
unobtrusive physiological signals.

3.3 Data Representation
Given the diversity found in the literature of physiological
synchrony and to analyse the state-of-the-art open ques-
tion (RQ1) of which data representation better expresses
group physiological synchrony for emotion recognition, we
explore diverse data representations:

Signal Morphology
Corresponds to the cleaned and processed signal morphol-
ogy. For the AMIGOS dataset [40], we used the processed
data given by the authors. Regarding the EDA data, we
removed existent spikes using the modified Z-score3, the
signal was filtered using a Butterworth low-pass filter of
4th order with a cut-off frequency of 5 Hz, and a smoother
filter with a window of 0.25 seconds. Afterwards, the signal
was normalised (y−µ

σ , µ: sample mean; σ: sample standard
deviation) for each trial. The ECG signal was filtered using
a FIR bandpass filter ∈ [3, 45] Hz and the R-peaks were
computed using the BioSPPy Hamilton segmenter [53]. For
the K-Emocon dataset, we used the PPG to extract the
heartbeat peaks, which was filtered using a Butterworth
bandpass filter with 1-8Hz cutoff of 4th order. The heartbeat
peaks were extracted using the BioSPPy extractor [54]4.

1. github.com/bmfreis/recurrence python; Accessed: 26/08/2022
2. docs.scipy.org/doc/scipy/reference/generated/scipy.signal.

correlate.html; Accessed: 12/01/2023
3. towardsdatascience.com/removing-spikes-from-raman-spectra-\

\8a9fdda0ac22; Accessed: 26/08/2022
4. github.com/scientisst/BioSPPy; Accessed: 26/08/2022

According to [55], the duration of an emotional response
ranges from 0.5 to 4 seconds, reproducing changes in phys-
iological data from 3 to 15 seconds [56]. In both datasets,
the data were segmented in 20 seconds windows with 75%
overlap. The EDA data was decomposed into the EDR and
EDL components using the cvxEDA library [57].

Image
We use spectrograms to collect spectral information and re-
currence plots which allow to characterise non-periodic and
non-stationary signals. Both have been applied for emotion
recognition with state-of-the-art results in the works of [58],
[59].

Hand-crafted Features
We extracted a total of 26 features from the EDA data based
on the work by [60], and 76 features from the ECG interbeat
intervals5. Redundant features (with > 85% correlation)
were removed, resulting respectively in 21, and 31 features
for the EDA and HRV (Table 1 in the Appendix Section of
the Supplementary Material).

An example with the data representations is shown in
Fig. 2. Fig. 2 – a, shows the morphological space represen-
tation (EDA, EDR and EDL) for one sample (20 seconds)
extracted from the AMIGOS dataset. Fig. 2 – b and c, display
a spectrogram and recurrence plot applied on the signal
from Fig. 2 – a, using a viridis colormap.

Signal morphology (Fig. 2 – a) and hand-crafted features,
were used as the data space input to compute the synchrony
between two subjects in our WGS method (MA path – inter-
personal model). These two spaces, along with the image-
based space (Fig. 2 – b and c) were used as input for a binary
arousal/valence classifier, for both a final classification in
the MB path – intrapersonal model; and to learn a higher
level representation in which the WGS was applied (MA
path – interpersonal model).

Table 2 displays a summary with the synchronisation
metrics applied for each data type in the MA path – interper-
sonal model. The data types were divided into morphology
and feature-based. The morphology space includes the EDA
components (EDR and EDL) through path IA and IB in Fig.
1, while the feature-based includes EDA and HRV features
used also in both IA and IB paths in Fig. 1. The image
representation is not included since it was not used to obtain
the subjects’ synchronisation, only as input for the neural
network in the IA path in Fig. 1, where a feature-based latent
representation was learned and then used to calculate the
physiological synchronisation and the emotion classification
label.

3.4 Classification Models
The state of the art of emotion recognition based on phys-
iological data relies, mostly, on the use of artificial intelli-
gence algorithms incorporating the individual’s data with
no group context. In our work, we start by replicating the
traditional approach found in the state of the art [17], which
does not consider group dynamics in its architecture. We de-
note this approach as the intrapersonal methodology, which

5. pyhrv.readthedocs.io/en/; Accessed: 26/08/2022
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TABLE 2: Synchrony metrics applied in each data space
in the interpersonal model. The data spaces were divided
in morphology space (EDR and EDL signal components
used in both IA and IB paths in Fig. 1), and feature space
(EDA and HRV features in the IB path in Fig. 1; or latent
representations from the deep learning models in the IA
path in Fig 1).

Morphology Space Feature Space
Pearson Pearson
Spearman Spearman
Cosine Cosine
DTW Euclidean Distance
Euclidean Distance
Cross-Correlation
Coherence
Recurrence Plot

we use as a benchmark model. Then, we expand the state of
the art by using the learned classification model to obtain a
higher-level data representation in which the interpersonal
approach is applied. We apply a specific neural network
model for each data space.

Signal Morphology
For 1D data (EDA, EDR, EDL – Morphology representa-
tion), we rely on the proposed approach from [61], which
attained state-of-the-art results for the AMIGOS dataset.
The architecture denoted as RTCAN-1D receives as input
the three components of the EDA data: EDA, EDR and
EDL in three channels. The architecture starts by perform-
ing a shallow feature extraction with a convolution layer
and batch normalisation. Then, a combination of the three
components is performed by an attention module – signal
channel attention (SCA): with two convolution layers, fol-
lowed by a sigmoid activation which is multiplied by the
attention weight. Temporal similarities are analysed using
a non-local attention mechanism relying on an embedded
Gaussian kernel as similarity metric and a 1D convolution
layer followed by average pooling with a kernel of 1 to
conduct linear embedding – residual nonlocal temporal
attention module. In a third step, an adapted ResNet-18
extracts higher-level features, replacing the 2D convolutions

with 1D and simplifying the residual block to perform 1D
convolution, batch normalisation and a ReLU activation.
Lastly, the classification is performed following 3 fully con-
nected layers, 3 ReLU functions, and a Softmax function.
A pipeline of the architecture can be found in Fig. 1 of the
Supplementary Material.

Image
For the 2D representation (Image – EDA Spectrogram and
EDA Recurrence plot), we followed a similar strategy and
applied a pre-trained ResNet-18 model [62] (Fig. 2 in the
Supplementary material), with state-of-the-art results for the
AMIGOS dataset in [58], [59]. The ResNet-18 is based on
the addition of residual layers with an identity mapping
to the input data, i.e. shortcuts that allow skipping layers.
The usage of residual layers has been shown to improve the
convergence in deep networks [62].

Hand-crafted Features
Lastly, for the hand-crafted features space (EDA and HRV
features), we maintained the ResNet-18 overall architecture
but changed the 2D convolutional layers to linear transfor-
mation layers. For all the models, the last layer was changed
to set the class number to 1 to perform binary classification.

The models were evaluated using Leave-One-Subject-Out
(LOSO), with one subject left for the test set while the
remaining are used in the training set. One subject from
the group training set was randomly selected and used
as the validation set. The training, testing and validation
configuration is the same for both intra- and interpersonal
evaluation.

The models were developed in Python using the PyTorch
library6, and tuned through the Ray tune library7 using a
grid-search space. Table 3 shows the values of the hyper-
parameters used as search space. The Adam optimiser was
used as the optimisation algorithm.

In addition to deep learning models, we used classic
machine learning algorithms8: Random Forest (RF), SVM,

6. pytorch.org/; Accessed: 26/08/2022
7. docs.ray.io/en/latest/tune/index.html; Accessed: 26/08/2022
8. scikit-learn.org; Accessed: 26/08/2022
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(b) EDA Spectrogram.
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(c) EDA Recurrence plot.

Fig. 2: Illustration of the data representations for the AMIGOS dataset on a 20 seconds sample. The image data in (b) and
(c) were resampled to a 224x224 size to fit the input to the deep learning models.
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TABLE 3: Hyperparamters space values. Dim – Dimension space in arousal (A), and valence (V). The parameters are shown
per dataset for AMIGOS (A) and K-Emocon (K). Nomenclature: Grace Per. – Grace period. Learn. Rate – Learning rate;
Weight Dec. – Weight decay.

Dim. Feature Image Morphology
EDA HRV Spect. RP EDA-EDR-EDL

Batch size A 16 (K, A), 128 (K, A) 16 (K, A), 128 (K, A) 16 (K), 128 (K, A) 16 (K), 128 (K, A) 16 (K), 128 (K), 256 (A)
V 16 (K), 256 (K, A)

Epoch A 800 (K, A) 800 (K, A) 300 (K), 800 (A) 800 (A), 1000 (K) 800 (K), 1000 (A)V 600 (K), 800 (A) 600 (K), 800 (A) 60 (K), 800 (A) 60 (K), 800 (A)

Gamma A 0.5 (A), 1.5 (K) 0.5 (A), 1.5 (K) 0.5 (K) 1.5 (K) 1.5 (K)V 1.5 (K)

Grace Per. A 0 (A), 10 (K), 50 (K) 10 (K), 50 (K), 60 (A) 0 (K), 10(A), 20 (K) 0 (K, A), 50 (K) 10 (K), 100 (K), 900 (A)
V 0 (A), 10 (K), 100 (K) 0 (A), 10 (K), 100 (K) 0 (K), 10 (A), 50 (K) 0 (K), 10 (A), 40 (K) 10 (K), 200 (K), 900 (A)

Learn. Rate A 1e-3 (K, A), 1e-5 (K, A) 1e-3 (K, A), 1e-5 (K, A) 1e-3 (K), 1e-5 (K), 1e-6 (A) 1e-5 (K, A), 1e-3 (K) 1e-5 (K, A), 1e-3 (K)V 1e-6 (K, A), 1e-3 (K) 1e-6 (K, A), 1e-3 (K)

Patience A 6 (A), 10 (K) 6 (A), 10 (K) 5 (A), 10 (K) 5 (A), 10 (K) 10 (K), 50 (A)V

Weight Dec. A 0.01 (K, A)
V 0.01 (K, A)

and a Naive Bayes (NB), representing a non-linear, non-
probabilistic and linear, and probabilistic model, respec-
tively. The SVM, and RF hyperparameters were tunned
using a 4-fold Cross-Validation (CV) grid-search.

4 RESULTS

The results are divided into two sub-sections. We start
by presenting the results for the benchmark intrapersonal
model (Section 4.1) where no group information is em-
bedded into the model architecture. The obtained models
are then used to get an additional higher-level space used
as input data representation for the interpersonal method
(Section 4.2).

4.1 Intrapersonal Model

We divide our results by group use case:
AMIGOS Dataset Table 4 shows the intrapersonal mod-

els results for the arousal and valence dimensions on the
AMIGOS dataset. Due to the heavy data imbalance, we
consider two metrics: The weighted F1-score (W-F1), which
can be found in the emotion recognition literature, e.g. [55],
weights the results by their count value to consider data
imbalance. While the macro F1-score (M-F1) performs an
unweighted mean of the label predictions. Through the rest
of our work, we focus our analysis on the macro F1-score9,
while still leaving for observation the weighted F1-score on
the tables, for a more realistic performance in the real world,
where data imbalance is expected to be pervasive.

Overall in Table 4, the deep learning models attain
similar results or outperform traditional machine learning
models. For the arousal dimension, the best performance is
obtained for a fully-connected ResNet network using HRV
features (≈ 59.4%, M-F1). For the valence dimension, the
best performance is obtained when combining EDA and
HRV features in a fully-connected ResNet (≈ 66.44%, M-
F1). The use of images (recurrence plot and spectrogram) or
raw data (EDA, EDR, EDL – Morp.) did not result improve
performance, attaining a F1-score close to random chance in
both dimensions. Likewise, for the SVM on EDA data which
attained the lowest performance overall (< 40%, M-F1).

9. scikit-learn.org/stable/modules/generated/sklearn.metrics.f1
score.html

TABLE 4: Results for the intrapersonal approach applied on
the AMIGOS dataset. Nomenclature: Morp. – Signal mor-
phology space; FV – Feature vector; Spect. – Spectrogram;
RF – Random Forest; NB – Naive Bayes; SVM – Support
Vector Machine; W-F1: Weighted F1-score; M-F1: Macro F1-
score; RP – Recurrence Plot; NN – Neural Network.

Data AMIGOS
Acc (%) W-F1 (%) M-F1 (%) Training Time (s)

Arousal
Morp. – NN 66.73 ± 07.84 66.68 ± 09.67 50.49 ± 05.21 11255.11 ± 191.50
EDA FV – NN 61.65 ± 06.93 64.16 ± 07.53 50.93 ± 05.84 301.58 ± 273.83
EDA FV – SVM 37.26 ± 10.85 36.70 ± 15.09 34.14 ± 09.42 5.43 ± 3.69
EDA FV – NB 72.75 ± 06.79 68.92 ± 10.68 50.21 ± 03.82 0.01 ± 0.00
EDA FV – RF 64.51 ± 10.65 65.26 ± 10.16 51.07 ± 07.73 3.58 ± 3.92
EDA Spect. – NN 70.18 ± 08.73 68.25 ± 10.84 50.66 ± 03.09 1203.70 ± 340.90
EDA RP – NN 70.95 ± 11.32 68.19 ± 11.87 49.37 ± 04.25 2076.95 ± 6608.11
HRV FV – NN 68.51 ± 07.31 70.71 ± 07.81 59.40 ± 08.08 984.82 ± 623.01
HRV FV – SVM 49.59 ± 11.87 52.45 ± 12.82 45.43 ± 11.99 6.13 ± 1.28
HRV FV – NB 69.18 ± 17.15 66.76 ± 17.49 51.21 ± 11.47 0.01 ± 0.00
HRV FV – RF 66.95 ± 09.19 69.20 ± 10.95 58.79 ± 10.78 2.06 ± 1.59
EDA + HRV FV – NN 61.65 ± 6.93 64.16 ± 07.53 50.93 ± 05.84 301.58 ± 273.83
EDA + HRV FV – RF 64.16 ± 11.06 66.40 ± 11.70 56.54 ± 11.39 5.16 ± 4.35
Valence
Morp. – NN 55.33 ± 08.56 55.06 ± 08.30 49.65 ± 06.47 11197.13 ± 192.68
EDA FV – NN 55.77 ± 04.51 56.30 ± 04.78 51.78 ± 03.01 283.68 ± 227.95
EDA FV – SVM 41.37 ± 07.15 37.69 ± 09.72 38.59 ± 07.51 5.00 ± 0.98
EDA FV – NB 61.86 ± 06.59 56.95 ± 08.65 49.02 ± 04.12 0.01 ± 0.00
EDA FV – RF 52.46 ± 09.84 52.17 ± 10.19 49.13 ± 08.35 1.96 ± 2.69
EDA Spect. – NN 54.55 ± 05.14 55.13 ± 05.67 50.34 ± 02.99 1140.24 ± 409.72
EDA RP – NN 53.69 ± 05.38 54.28 ± 05.54 49.97 ± 03.77 1168.37 ± 436.49
HRV FV – NN 68.05 ± 09.89 67.98 ± 10.30 64.56 ± 10.57 352.97 ± 328.95
HRV FV - RF 69.04 ± 10.63 68.64 ± 12.10 65.63 ± 11.91 3.30 ± 1.93
HRV FV – NB 61.85 ± 11.63 59.89 ± 11.42 53.82 ± 08.54 0.02 ± 0.00
HRV FV – SVM 51.50 ± 10.05 51.40 ± 10.33 49.54 ± 10.07 5.25 ± 1.18
EDA + HRV FV – NN 69.16 ± 09.99 69.36 ± 10.41 66.44 ± 10.05 430.14 ± 319.09
EDA + HRV FV – RF 51.50 ± 10.05 51.40 ± 10.33 49.54 ± 10.07 5.18 ± 1.15

In addition to the macro F1-score, we display the accu-
racy (which is the most predominant score in the literature),
although it does not take data imbalance into consideration,
and weighted F1-macro (which shows the expected results
for an imbalanced distribution). In both metrics, the best
performing methodology is above ≈ 69% in both dimen-
sions.

K-EmoCon Dataset Table 5 shows that for the K-
EmoCon data, the classification performance is overall
lower for the arousal dimension, being below random
chance; For the arousal dimension, the best performance
is obtained for the NB classifier combining EDA and HRV
data. For the valence dimension, the best performance is ob-
tained using the HRV features and a neural network model
(≈ 73.7%, M-F1). The deep learning morphology-based and
image-based (recurrence plot, spectrogram) methods either
outperform traditional machine learning algorithms or at-
tain similarly competitive results. Overall, the best method
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shows an accuracy superior to 70% and 90% for the arousal
and valence dimensions, respectively.

TABLE 5: Results for the intrapersonal approach applied on
the K-EmoCon dataset.

Data K-EmoCon
Acc (%) W-F1 (%) M-F1 (%) Training Time (s)

Arousal
Morp. – NN 59.39 ± 22.63 61.59 ± 22.80 45.04 ± 15.44 169.02 ± 134.94
EDA FV – NN 69.77 ± 14.76 69.10 ± 19.07 45.71 ± 05.24 56.60 ± 83.81
EDA FV – SVM 60.48 ± 19.49 63.49 ± 18.91 45.71 ± 10.00 0.23 ± 0.06
EDA FV – NB 74.48 ± 17.50 70.97 ± 22.12 46.28 ± 07.22 0.00 ± 0.00
EDA FV – RF 57.65 ± 18.99 61.27 ± 19.10 44.90 ± 10.84 0.13 ± 0.11
EDA Spect. – NN 69.62 ± 14.77 67.88 ± 20.69 43.87 ± 05.49 608.62 ± 770.74
EDA RP – NN 71.54 ± 15.63 68.93 ± 21.93 47.49 ± 13.53 1962.41 ± 3416.71
HRV FV – NN 68.81 ± 14.14 68.60 ± 19.58 46.30 ± 06.56 59.19 ± 70.02
HRV FV – SVM 56.20 ± 14.88 61.02 ± 15.58 45.27 ± 09.88 0.40 ± 0.09
HRV FV – NB 72.76 ± 15.10 71.22 ± 19.47 47.62 ± 07.15 0.00 ± 0.00
HRV FV - RF 59.64 ± 13.26 63.93 ± 15.50 46.37 ± 08.26 0.32 ± 0.14
EDA + HRV FV – NN 67.37 ± 14.99 68.13 ± 19.91 47.15 ± 06.59 54.93 ± 57.88
EDA + HRV FV – NB 70.68 ± 14.05 70.63 ± 18.32 47.67 ± 05.74 0.00 ± 0.00
Valence
Morp. – NN 92.86 ± 09.38 90.35 ± 13.23 73.02 ± 27.04 1185.19 ± 875.01
EDA FV – NN 90.45 ± 10.63 88.95 ± 13.02 62.32 ± 24.80 394.79 ± 370.72
EDA FV – SVM 70.87 ± 18.13 76.83 ± 16.86 43.42 ± 07.47 0.22 ± 0.07
EDA FV – NB 84.76 ± 10.03 86.83 ± 11.77 47.97 ± 02.84 0.00 ± 0.00
EDA FV – RF 77.66 ± 15.90 81.79 ± 14.93 50.71 ± 16.88 0.16 ± 0.13
EDA Spect. – NN 93.32 ± 09.34 90.60 ± 13.35 73.14 ± 26.93 479.80 ± 97.12
EDA RP – NN 94.19 ± 07.10 92.96 ± 08.43 71.85 ± 26.40 350.58 ± 118.23
HRV FV – NN 93.36 ± 09.44 90.66 ± 13.41 73.70 ± 26.52 238.49 ± 280.54
HRV FV – SVM 83.14 ± 09.59 85.89 ± 11.40 48.80 ± 05.40 0.25 ± 0.08
HRV FV – NB 10.82 ± 10.76 10.66 ± 08.67 10.06 ± 09.79 0.00 ± 0.00
HRV FV – RF 87.56 ± 10.46 87.94 ± 12.13 55.28 ± 18.90 0.34 ± 0.21
EDA + HRV FV – NN 90.89 ± 09.22 89.36 ± 12.93 55.22 ± 18.98 71.32 ± 81.30
EDA + HRV FV – RF 88.16 ± 12.72 88.02 ± 13.61 60.59 ± 23.18 0.42± 0.33

4.2 Interpersonal Model
Table 6 summarises the main results for the interpersonal
approach, namely WGS and average pooling. Tables 2 and
3 (for AMIGOS), and Tables 4 and 5 (for the K-EmoCon
dataset) in the Appendix of the supplementary material,
provide the detailed results obtained across all data repre-
sentations and similarity metrics for the arousal and valence
dimensions, respectively.

Classification Performance: Analysing Table 6, for the
arousal dimension, the experimental results show that sim-
ilarly to what was found with the intrapersonal method,
the WGS applied on the HRV features obtained the best
performance (≈ 72.15%, M-F1) using the Euclidean distance
to measure physiological synchronisation. The use of Eu-
clidean distance on EDL data was also able to maintain
the M-F1 average above the 72% mark. For the valence, the
best performance was obtained for the EDA features using
once again the Euclidean distance (≈ 81.16%, M-F1), closely
followed by HRV features on the learned representation
using Cosine similarity (≈ 81.11%, M-F1).

For the K-EmoCon dataset, in the arousal dimension,
the Cosine similarity on HRV features achieves an equal
performance to the use of a non-weighted average pooling
(≈ 52.63%, M-F1), with the accuracy (≈ 83.07%) surpassing
random chance. For the valence dimension, the best F1-
score is obtained for the EDL representation using Cross-
Correlation to measure physiological synchrony (≈ 65.09%,
M-F1).

Similarity Metric: Looking at each data representation
(Morp. – Morphology (i.e. EDA, EDR, EDL) vs FV – feature
vector vs LR – learned representation) in Tables 2 and 3
for AMIGOS and Tables 4 and 5 for K-EmoCon in Ap-
pendix. Across dimensions, we observe that for the signal
morphology spaces (EDR and EDL) the DTW, Euclidean
distance, cross-correlation, recurrence plot, and coherence

obtain the best performance. With the exception of feature
representations, the use of Pearson, Spearman and Cosine
similarity often deteriorate the results.

For the AMIGOS dataset, across data representations
and dimensions, often Cosine similarity shows the lowest
STD on the similarity weights (Weight STD), approximating
its results to average pooling. The results for the non-
weighted group synchronisation (average pooling) show
similar results with the use of synchronisation metrics, out-
performing the aforementioned low-quality synchronisation
metrics (i.e. Pearson, Spearman, Cosine similarity). More-
over, for the K-EmoCon dataset, average pooling outper-
forms the remaining. Additionally, we observe that regard-
ing data representations, the EDA and HRV features obtain
the most consistent results across synchronisation metrics.
In terms of accuracy, the best-performing method attains
average results > 80% (arousal and valence) for AMIGOS,
and > 70% (arousal) and 90% (valence) for K-EmoCon.

Computational Complexity: Analysing the computation
time, overall, a similar order of magnitude (< 0.1 seconds
per sample) is obtained across similarity metrics, with the
exception of the recurrence plot in the AMIGOS dataset,
which shows high prediction times. The recurrence plot
computation time is due to the time to compute the recur-
rence plot and obtain the quantitative analysis features.

4.3 Discussion
Our work focused on group emotion recognition based on
unobtrusive physiological data, evaluating whether phys-
iological synchrony can be identified in diverse group
use cases such as dyadic conversations as per K-EmoCon
dataset [41], and group video-watching interaction as per
AMIGOS dataset [40]. Overall, our methodology relying
on physiological synchrony holds across datasets attaining
competitive results with the state-of-the-art intrapersonal
methodology, with the exception of the K-Emocon dataset
on the valence dimension. For the arousal dimension on the
K-EmoCon dataset, weighted synchronisation on the best-
performing metric (≈ 52.63%, M-F1) attains a similar result
to performing average pooling (≈ 52.63%, M-F1). Possibly
as a dyad is not enough to create a group atmosphere with
emotion contagion; also group-watching is more prone to
emotion contagion and physiological synchronisation than
conversation. Another possibility is that synchronisation
to just one user is more prone to noise than an average
over multiple users. Comparing a group of 4 individuals
(AMIGOS) to a dyad (K-EmoCon), the WGS performance
decreases in the latter (from ≈ 72.15% arousal, 81.16%
valence to ≈ 52.63% arousal, 65.09% valence, M-F1), still
maintaining score values above random chance.

Synchronisation Metrics and Data Representations
Our RQ1 focused on analysing which synchronisation met-
rics and data representations can better measure physiolog-
ical synchrony for emotion recognition. Our experimental
results showed that for the AMIGOS dataset, the use of
a learned representation on the HRV features attained the
highest performance for arousal, and EDA and HRV fea-
tures for valence. The results for the EDA data on the va-
lence dimension are opposite to what we canonically expect,
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TABLE 6: Best performing data representation and synchronisation metrics for the WGS methodology. The results are
shown in terms of accuracy (Acc), weighted-F1 score (W-F1), macro-F1 score (M-F1), computation time per sample (Time),
and weights standard deviation (Weight STD). The best results are shown in bold.

Dataset Dimension Data Similarity Metric Acc (%) W-F1 (%) M-F1 (%) Time (s) Weight STD

AMIGOS
Arousal LR HRV FV Euclidean Distance 83.07 ± 04.92 82.87 ± 06.05 72.15 ± 10.11 0.007 ± 0.002 0.12 ± 0.05

Average Pooling 82.65 ± 05.49 82.26 ± 07.05 71.34 ± 10.78 0.010 ± 0.005 0.00 ± 0.00
HRV FV – NN Intrapersonal 68.51 ± 07.31 70.71 ± 07.81 59.40 ± 08.08 03.07 ± 01.95

Valence EDA FV Euclidean Distance 82.80 ± 06.52 83.26 ± 06.09 81.16 ± 07.63 0.004 ± 0.006 00.06 ± 00.01
Average Pooling 82.70 ± 06.46 83.19 ± 06.01 81.11 ± 07.58 0.008 ± 0.001 00.00 ± 00.00

EDA + HRV FV – NN Intrapersonal 69.16 ± 09.99 69.36 ± 10.41 66.44 ± 10.05 01.34 ± 00.99

K-EmoCon
Arousal HRV FV Cosine Similarity 70.87 ± 22.50 70.80 ± 22.90 52.63 ± 21.28 0.000 ± 0.000

Average Pooling 70.87 ± 22.50 70.80 ± 22.90 52.63 ± 21.28 0.000 ± 0.000
EDA + HRV FV – NB Intrapersonal 70.68 ± 14.05 70.63 ± 18.32 47.67 ± 05.74 00.00 ± 00.00

Valence EDL Cross-Correlation (Max) 90.04 ± 08.91 90.16 ± 10.63 65.09 ± 22.55 0.001 ± 0.000
Average Pooling 90.04 ± 09.88 90.04 ± 10.94 64.90 ± 22.59 0.000 ± 0.000

HRV FV – NN Intrapersonal 93.36 ± 09.44 90.66 ± 13.41 73.70 ± 26.52 01.88 ± 02.21

since EDA is typically associated with arousal [17] and the
SNS. The results are possibly due to a high arousal-valence
annotation correlation (around 66%), or lower variability
in the data (Weight STD of 0.06) which could bias for a
higher synchronisation. For the K-EmoCon dataset, aver-
age pooling obtained a similar performance to WGS using
Cosine similarity on HRV features for arousal, while for
the valence space, Cross-Correlation on the EDL space was
the best-performing metric. Overall, we observed a better
performance on the feature space compared to morphology
or image-based learned representations (from recurrence
plots or spectrograms). Across datasets and dimensions,
with the exception of feature representation, the use of
Pearson, Spearman and Cosine similarity often deteriorate
the method’s performance. On the whole, the results for
the non-weighted group synchronisation (average pooling)
show similar results with the use of synchronisation met-
rics, outperforming the aforementioned lower performance
synchronisation metrics (i.e. Pearson, Spearman, Cosine).
For both datasets, the valence dimension attained a higher
classification F1-score when compared to arousal, being in
line with what is expected in the literature [17].

Interpersonal Model vs Intrapersonal Model
Our RQ2 extends the state of the art by analysing whether
we can perform emotion recognition from a subject group
members’ emotion labels. Our experimental results show
that the proposed interpersonal methodology outperforms
or obtains competitive results comparatively with the state
of the art: The authors in [63] report an accuracy of 55.22%
(F1-score: 44.86%) for arousal; and 91.04% (F1-score: 87.62%)
for valence. It should be noticed that the authors rely on
additional multi-modal data such as accelerometer, ECG,
and skin temperature. For the AMIGOS dataset, to the
best of the authors’ knowledge, this is the first paper to
use only the group data (long videos) for a direct com-
parison of results. Our methodology surpasses the state
of the art in the K-EmoCon on arousal (≈ 52.63%, M-F1
K-EmoCon) and provides novel results for AMIGOS. The
literature often relies on intrapersonal models which do
not take into account group information. We evaluated our
proposed methodology against the baseline intrapersonal
models and observed that interpersonal models outperform
intrapersonal models for both datasets and dimensions,
with exception of the valence dimension on the K-EmoCon
dataset: On the AMIGOS dataset, the intrapersonal model

on the arousal and valence dimensions evaluated on M-
F1 attained ≈ 59.40% and 66.44% versus ≈ 72.15% and
81.16% for the interpersonal model, respectively; and on
the K-EmoCon dataset the intrapersonal model on arousal
and valence evaluated on M-F1 attained ≈ 47.67%, 73.70%
versus ≈ 52.63%, 65.09% for the interpersonal model.

A limitation which is not controlled for in our work is
the existence of pseudosynchrony i.e., the apparent syn-
chronisation between signals even when those signals are
not sharing information due to random coincidence. Pseu-
dosynchronisation was identified in the works of [64] where
nonverbal synchrony in psychotherapy is analysed. The
authors in [64] control for change by creating pseudogroups
with data from interactions that never happened. They do so
through permutation of time segments, which they compare
to genuine interactions. In WGS, similarly to the previous
work, only data from genuine interactions is used for the
prediction of the unknown subject label. In the work of [65],
the authors examined several methods for surrogate data
generation, where the synchronisation was removed (e.g.
data shuffling, segment shuffling, data sliding, participant
shuffling) to test for pseudosynchrony using window cross-
correlation. Across these samples, synchronisation above
0 was observed, denoting the phenomena of pseudosyn-
chrony using window cross-correlation as a similarity met-
ric.

These works show that due to the phenomena of pseu-
dosynchrony, physiological signals may show higher syn-
chronisation than would be expected if the signals were
totally disjoint, leading to a biased (lower accuracy) and less
generalization accuracy of WGS than it could be obtained
for truly synchronous groups. Thus, pseudosynchrony can
explain some of the misclassification errors observed in our
work. For the application of hypothesis tests, the creation of
pseudogroups (fake synchrony) makes sense since it allows
one to compare the pseudogroups to the sample under
study, and identify if synchrony exists or not. In our work,
on the other hand, we want to infer if WGS can be applied
for emotion recognition classification, or if the phenomena
of pseudosynchrony results in misclassification errors and
makes the model prediction unusable due to an increased
classification error.

5 CONCLUSION

The literature on group emotion recognition [2] reports that
under certain conditions, the interaction between the group
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members can lead to emotional contagion and physiological
synchrony. This phenomenon can be an evolutionary step
for emotion recognition systems, which tend to focus on the
data of the subjects individually [18] (intrapersonal meth-
ods), missing context information provided by the group. In
this article, we expand the state of the art by proposing and
evaluating a novel method based on the group members’
labels according to their physiological synchrony – WGS
(interpersonal method). To do so, we perform an analysis
of synchrony metrics and data representations to analyse
which better capture the physiological synchrony interac-
tion in a group setting for emotion recognition systems.
Additionally, the method is evaluated under different group
sizes (group of 4 versus dyad) and interaction use cases
(video-watching versus conversation).

The experimental results show that the WGS integrating
group information (interpersonal) is able to outperform the
current state-of-the-art methods based on intrapersonal data
(without group context) across datasets and dimensions,
with the exception of the valence dimension on the dyads
conversation dataset (K-EmoCon). Moreover, our method
surpasses the previous works (i.e. [63]) for K-EmoCon on
arousal, and provides novel comparable results for AMI-
GOS. Through the analysis of the WGS results on the two
datasets, we conclude that group physiological synchrony
contains useful context information for emotion recognition
in both use cases, namely dyad conversations and group
watching.

Future work may tackle the limitations of our proposed
method, namely: 1) requires annotated labels at test time;
2) performs binary classification, and adaptation is required
for fine-grained classification (i.e. multi-class); and 3) due
to the datasets specifications, it relies on the external anno-
tations by experts, which may not be related with the true
underlying emotional experiences. Lastly, we focus on either
dyads or groups of 4, although groups can vary widely in
size. This limitation arises from the available datasets, but
should be considered.

In summary, our study contributes to the field by: 1)
introducing interpersonal physiological synchrony using
physiological signals to emotion recognition; 2) performing
an analysis of feature representation methods for group
emotion recognition; 3) improving the accuracy of emotion
recognition on group-activity tasks over prior work.
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“Multiple users’ emotion recognition: Improving performance by
joint modeling of affective reactions,” in Int’l Conf. on Affective
Computing and Intelligent Interaction, 2017, pp. 92–97.

[24] W.-S. Chien, H.-C. Chou, and C.-C. Lee, “Belongingness and satis-
faction recognition from physiological synchrony with a group-
modulated attentive BLSTM under small-group conversation,”



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Companion Publication of the Int’l Conf. on Multimodal Interaction,
pp. 220–229, 2021.

[25] G. Chanel, M. Kivikangas, and N. Ravaja, “Physiological compli-
ance for social gaming analysis: Cooperative versus competitive
play,” Interacting with Computers, vol. 24, no. 4, pp. 306–316, 2012.
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