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ABSTRACT
While gesture taxonomies provide a classification of device-based
gestures in terms of communicative intent, little work has addressed
the usability differences in manually performing these gestures.
In this primarily qualitative study, we investigate how two sets of
iconic gestures that vary in familiarity, mimetic and alphabetic, are
affected under varying failed recognition error rates (0-20%, 20-
40%, 40-60%). Drawing on experiment logs, video observations,
subjects’ feedback, and a subjective workload assessment question-
naire, results revealed two main findings: a) mimetic gestures tend
to evolve into diverse variations (within the activities they mimic)
under high error rates, while alphabet gestures tend to become more
rigid and structured and b) mimetic gestures were tolerated under
recognition error rates of up to 40%, while alphabet gestures in-
cur significant overall workload with up to only 20% error rates.
Thus, while alphabet gestures are more robust to recognition er-
rors in keeping their signature, mimetic gestures are more robust to
recognition errors from a usability and user experience standpoint,
and thus better suited for inclusion into mainstream device-based
gesture interaction with mobile phones.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Input Devices and Strategies

General Terms
Experimentation, Design, Human Factors

Keywords
Device-based gesture interaction, mimetic gestures, alphabet ges-
tures, errors, workload, usability

1. INTRODUCTION &MOTIVATION
Whether we like it or not, errors and failures are an inevitable part
of interaction with technology. Device-based gestures (gesturing
by moving a device in 3-dimensional space), used in research set-
tings, home environments, or as part of everyday mobile interac-
tions, are gaining potential in becoming a suitable alternative to
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keyboard or touchscreen-based input, especially when users are en-
cumbered (e.g., manual multitasking [12]). Yet whether a gesture
fails due to poor system design or due to the user’s actions, errors
impede smooth (multimodal) interaction, as well as the adoption
of these novel gesture-based interaction methods. This is critical if
gesture-based interaction is included in consumer mobile phones.
These device-based gestures (or motion gestures [20])1 are to

be distinguished from surface ‘touchscreen’ gestures [22]), which
typically involve two-dimensional gesture interaction on a surface,
such as a tabletop or mobile touchscreen. In contrast, device-based
gestures typically make use of accelerometer and gyroscope sen-
sors to allow users to rotate the device in the air for performing
gestures in three-dimensional space. While there has been exten-
sive taxonomy-driven work on classifying gestures by referential
function into classes [20, 19] and recently identifying usable sets
of gestures as defined by users [20, 18, 10], it is still an open ques-
tion which set of gestures are most robust to errors in gesture-based
interaction from a performance-centered standpoint.
In this paper, we look closely at device-based gesture perfor-

mance using two iconic gesture sets, mimetic (e.g., mimicking a
handshaking behavior while holding a mobile device) and alpha-
bet gestures (e.g., drawing the letter ‘N’ in the air using a mobile
phone as a brush), and investigate how their referent-independent
performance is affected by varying failed recognition rates.

1.1 Research Questions
Our main research question is: how do mimetic and alphabet ges-
ture sets evolve in the course of interaction when the performed
gesture is not recognized under varying error rates? Specifically,
we investigate how users react when they are less or more familiar
with the ideal shape of a gesture, under varying error conditions.
Our hypothesis is that since mimetic gestures are less familiar than
alphabets, we expect participants to call on their own real-world
sensorimotor experience (on how they perform certain activities in
daily life) to perform a gesture. We expect the performance of a
mimetic gesture to be influenced by this experience, thus morphing
the iconic gesture into that previously learned gesture. For exam-
ple, while a ‘fishing’ gesture might be designed in a particular way
to perform some system function (e.g., hold device flat on palm,
tilt towards you, and place device back on palm), given unfamil-
iarity with its designed ideal form, we suspect that this same ges-
ture is more likely to morph into a more natural, learned fishing
gesture upon failed recognition attempts. Given the many ways to
fish (where variations could be due to cultural or individual differ-

1We use the term ‘device-based gestures’ and not ‘motion gestures’
to emphasize that these gestures require holding a device, and not
solely about motion as in vision-based gesture recognition such as
interacting with a Microsoft Kinect c©.



ences), we expect the evolved gesture to exhibit more variation in
the face of increasing error, especially since subjects do not know
the ideal shape of the mimetic gesture. Complementarily, this vari-
ation arises due to the higher degrees of freedom permitted in per-
forming that gesture.
By contrast, we expect alphabet gestures to exhibit much less

variation, instead becoming more rigid and structured after repeated
failed recognition attempts – this is because alphabet gestures not
only have lower degrees of freedom (namely, 2df), but the set of
ideal visual shapes is more familiar to users. Similar to work in
speech and handwriting recognition, we expect a hyperarticulation
[16, 14] of gestures as subjects begin to gesture more carefully to
arrive at the ideal shape required by the recognizer. This we hy-
pothesize will negatively impact the user experience (UX)2 of per-
forming these gestures.
Investigating the usability differences in a primarily qualitative

manner between mimetic and alphabet gestures here yields two
main research contributions: first, it aids gesture designers in se-
lecting which gesture set (mimetic or alphabet) is more robust to er-
rors, and hence better suited for inclusion into accelerometer and/or
gyroscope equipped mobile devices. This is achieved by providing
a deeper understanding of whether some gestures are intrinsically
more tolerant to recognition errors than others (e.g., by showing
that mimetic gestures, in lacking an ideal shape, can foster more
variation in gesture-based interaction). Second, it equips gesture
designers with the knowledge of which gesture sets overall induce
a lower subjective workload to perform, especially under condi-
tions of high recognition failure.
Additionally, we provide initial results on how errors can be an

impeding factor in performing gestures in public, as well as use-
cases for the tested gestures subjects reported on. The rest of the
paper is structured as follows: first we provide a review of related
work, then we present our study design and methods, give our re-
sults and discuss them, and finally conclude and hint at future work.

2. RELATED WORK

2.1 Gesture-based Interaction
Recent work has looked into the user preferences of certain ges-
tures given a task (e.g., call answering), where the goal was to ar-
rive at a taxonomy of gesture-task pairs that can aid device-based
gesture design [20]. Relatedly, a recent study [5] has investigated
the naturalness and intuitiveness of gestures, where the goal was
to understand how users’ mental models are aligned to certain ges-
tures. Another line of research has focused on the social accept-
ability of produced gestures under different settings (e.g., at home,
at the pub, etc.) [18]. The goal here was to equip gesture designers
with knowledge of which gestures are socially appropriate under
which settings and situations. While much research has focused on
the naturalness, intuitiveness, and the social consequences of per-
forming certain (surface and device-based) gestures, little research
has addressed how issues of failed recognition can transform a pro-
duced device-based gesture in the course of interaction.

2.2 Dealing with Recognition Errors Across
Modalities

Human factors research in multimodal interaction concerned with
recognition errors [11] is a well researched topic in multimodal in-
terfaces [2, 13, 15], where investigations were typically concerned

2UX here is based on ISO 9241-210 [1] definition: “A person’s
perceptions and responses that result from the use or anticipated
use of a product, system or service."

with error handling strategies devised by users in the face of recog-
nition errors (e.g., modality switching to a ‘familiar’, more efficient
modality). In speech-based interfaces, a common finding is that the
most intuitive and instinctive way for correcting errors in speech
is to repeat the spoken utterance [21] and hyperarticulate it [14].
For multimodal systems, a common error-correction strategy is to
repeat a modal action at least once prior to switching to another
modality [15]. In [15], they observed a repetition count (called
’spiral depth’) of depth 6, before users would switch to another
modality. In a follow-up study by [6], they tested 3 commercial
Automatic Speech Recognition (ASR) systems where they found
that a little over 50% of the time, subjects would continue to repeat
the utterance to a spiral depth of level 3.
However, while recognition errors have been well studied in do-

mains such as speech-based interfaces [2, 14], handwriting recog-
nition [16, 17], and multimodal interfaces [13], less attention has
been given to usability issues surrounding device-based gesture in-
teraction. An exception is the study by [8], where they investigated
user tolerance for errors in touch-less computer vision-enabled ges-
ture interaction under both desktop (keyboard readily available in
front of subjects) and ubiquitous computing settings (keyboard not
readily available). In this Wizard-of-Oz study, they found that the
interaction context played a significant role in how tolerant users
were to errors. Specifically, they found that in the ubiquitous com-
puting scenario, users are much more tolerant to errors than in the
desktop condition (where recognition error rates can potentially
reach 40%) before users will abandon gesture based interaction in
favor of traditional, keyboard-based input.
While the results of the study by [8] are relevant to the current

work, our work differs in three main ways: first, their goal was
to investigate whether and to what extent subjects would switch
modalities when confronted with recognition errors, and not study
how gestures evolve in response to error. Second, they were con-
cerned with a single gesture, and not different gesture sets and their
respective performance by users under different recognition error
rates. Finally, their concern was with computer vision-enabled in-
teraction, and not device-based gesture interaction.

2.3 Gesture Taxonomies
In [19], they distinguish between symbolic gestures and pantomimic
gestures. Symbolic gestures are gestures that have come to take
up a single, culturally-specific meaning. Examples include Ameri-
can Sign Language (ASL) gestures and natural language alphabets
(e.g., letter ‘C’). Pantomimic gestures on the other hand, are used
for showing (through mimicry) the use of movement of some in-
visible tool or object in the speaker’s hand. For example, when a
speaker says “I turned the steering wheel hard to the left", while
mimicking the action of turning a wheel with both hands, they are
performing a pantomimic gesture. Here, we are not concerned with
the external gesture referent, only its iconic movement in space.
In [20], in order to study user-defined motion gestures, they de-

vised an initial taxonomy by which to classify gestures. Here, they
distinguished between metaphor gestures (metaphor of acting on a
physical object other than the phone), physical gestures (direct ma-
nipulation), symbolic gestures (visually depicting a symbol by e.g.,
drawing with the phone), and abstract (gesture-activity mapping is
completely arbitrary). In the foregoing taxonomies, the classifica-
tions are based on the communicative intent behind performing the
gesture (i.e., its representational aspect), and not on the usability
and user experience (UX) of manually performing the gesture.
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(a) Mimetic gestures.
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(b) Alphabet gestures.

Figure 1: The designed gesture sets for (a) mimetic gestures and (b)
alphabet gestures.

3. METHODS

3.1 Study Design
In this study, we do not to test the communicative intentions of sub-
jects while performing gestures (i.e., no referential aspect), but only
the manual ’performance’ of the iconic gesture itself. Under this
performance-centric view, the mimetic gestures are iconic move-
ments of real-world actions and the alphabet gestures are iconic
movements of writing letters.
Mimetic gestures were chosen as they provide a natural means

of interaction, making them good candidates for inclusion into mo-
bile technology. Similarly, alphabets can be produced by any lit-
erate person, and hence suitable for comparison. Other symbols
(e.g., salute or high-five gesture) were not tested to avoid undue cul-
tural bias. Furthermore, like mimetic gestures, alphabets can also
be easily learned and recalled, and have practical potential for use
in mobile technology (e.g., mid-air writing for user authentication
[9]). Given these design considerations, we designed 12 gestures
(6 mimetic, 6 alphabetic). Mimetic gestures are: Fishing, Trash-
ing, Shaking, Handshake, Throwing, Glass Filling. These specific
gestures were chosen because they represent familiar yet different
activities, where all have more than 2 degrees of freedom. Alpha-
bet gestures we chose are English letters (given our subject pools’
language), varied by difficulty (e.g., 2 strokes or 3 to draw the let-
ter). Only 6 different gestures for each set was chosen to avoid
participant fatigue, given the high number of trials (200 total) each
participant entered. Nevertheless, we believe the chosen gesture
samples provide sufficient variation to characterize each gesture set
with respect to varying failed recognition rates. Both gesture sets,
and their movement in space, are shown in Fig. 1.
To investigate how different types of performed gestures respond

to varied recognition errors, we used an automated Wizard-of-Oz
method [4] where we simulated each of three failed recognition

error rate conditions: low (0-20%) error rate, medium error rate
(20-40%), high error rate (40-60%). Subjects were told that real
gesture recognition engines were being tested, where each of the
algorithms differs in terms of how sensitive it is to the user’s ges-
ture interaction style. When subjects performed a gesture, the au-
tomated wizard would draw for each gesture block an error rate
randomly from the assigned error rate range specific to the con-
dition. When a gesture is performed, the subject receives coarse
feedback (recognized / not recognized) on whether or not the per-
formed gesture was successfully recognized.
For this study, testing real recognizers is irrelevant as we are

only interested in the usability and user experience (UX) of ges-
ture performance under the chosen error rates. This is both in line
with previous work [8], and conveniently allows testing our re-
search questions without the unpredictability of real recognizers.
Importantly, here we study gesture performance, not how differ-
ent feedback improves gesture learnability. Additionally, we tested
task-independent gestures for two reasons: first, it allows us to un-
derstand the differences between the two gesture sets (mimetic and
alphabet) independent of task type. This would eliminate potential
subject bias in both workload and expected gesture evolution under
error conditions due to the mapping of a given gesture to a task.
Second, following [10], it allows subjects to freely speculate about
the applied real-world use of these two gesture types.
The conducted experiment was a mixed between- and within-

subject factorial (2 x 3) design. A between-subjects design between
the two gesture sets was chosen for two reasons: first, to disallow
any transfer effects between the two gesture sets thereby avoid-
ing any contamination between the gesture mental models formed
in subjects. Second, testing all gestures in one session would ex-
cessively lengthen the duration of the experiment, and pose a risk
of participant fatigue. There are two independent variables (IVs):
gesture type (2 levels: mimetic vs. alphabet) and recognition er-
rors (3 levels: low (0-20%) vs. medium error (20-40%) vs. high
error (40-60%), where gesture-type was a between-subjects fac-
tor and error rate a within-subjects factor. Each between-subject
condition tested 6 gestures (12 total), randomized across subjects.
Each gesture occurred in all within-subject conditions (counterbal-
anced across subjects), in addition to two practice blocks, which
resulted in 20 gesture blocks per experimental session. Each block
consisted of 10 trials. In a block, subjects were asked to perform
a given gesture using a Wii Remote R© 10 different times (once per
trial), where the error rates are randomly distributed within the cor-
responding recognition error level. In the practice blocks however,
the error rate was always low. In total, each subject entered 200
trials (20 practice, 180 test).
The experiment was coded using NBS Presentation R©3, an ex-

perimental control and stimulus delivery software. Interaction and
syncing with the Wii Remote was done using GlovePie4, a pro-
grammable input emulator. Four data sources were collected: mod-
ified NASA-TLX workload data [3, 7], experiment logs, gesture
video recordings, and post-experiment interviews. The modified
NASA-TLX questionnaire assessed participants’ subjective work-
load quantitatively ([0,20] response range) through the index’s con-
stituent categories: Mental Workload, Physical Workload, Time
Pressure, Effort Expended, Performance Level Achieved and Frus-
tration Experienced [7], plus the additional categories of Annoy-
ance and Overall Preference [3]. Given no time pressure imposed
on subjects in the study, we did not use this category. Additionally,

3http://www.neurobs.com/; last retrieved: 15-08-2012
4http://sites.google.com/site/carlkenner/glovepie; last retrieved:
15-08-2012



as the Annoyance category is specific to audio interfaces, we only
made the additional use of the Overall Preference category.

3.2 Subjects
24 subjects (16 male, 8 female) aged between 22-41 (Mage= 29.6;
SDage= 4.5) were recruited. Our subject sample spanned 8 dif-
ferent nationalities, where all but one were right-handed (23/24).
Many subjects (17/24) had a technical background, and most (19/24)
were familiar with gaming consoles that use some form of gesture
recognition technology (e.g., NintendoWii c© or Microsoft Kinect c©).

3.3 Setup & Procedure
The experiment was carried out at the usability lab at XYZ center.
Each experimental session took approximately 1 hour to complete.
Subjects were seated in front of a monitor, where a tripod-mounted
camera was aimed at their gesture interaction space. They were
allowed to define their own interaction space to ensure their com-
fort during the session, so long as it was still within the camera’s
view. Prior to the experiment, each subject filled a background in-
formation form, signed an informed consent form, and read through
detailed instructions for performing the task. After reading the in-
structions, a tutorial was given on how to perform each gesture. The
tutorial involved the experimenter performing each gesture (using
the Wii Remote) right next to the subject.
The first two blocks were practice blocks, set always at a low

error rate. Before each block, a video of how the gesture to be per-
formed in the next trials was shown on the screen. The performance
of the gestures in the videos was identical to how they were per-
formed by the experimenter in the tutorial. The videos were shown
to eliminate any failed memory recall effects, where subjects’ (mul-
timodal) interaction requires a visual input (videos watched) and a
translation to somatosensory output (performed gesture). In a trial,
the subject would be instructed on screen in text to perform the
gesture for that block (e.g., “Perform Fishing gesture."). A subject
would have to press and hold the A button on the Wii Remote to
start recording the gesture, and release it after completing the ges-
ture. After performing the instructed gesture, if the subject falls
into a successful gesture recognition trial, a green checkmark im-
age is flashed on the screen, while in a failed recognition trial, a
red image with the word “FAIL" is flashed on the screen. After
each block, subjects were asked to fill in the modified NASA-TLX
questionnaire, where they were provided with an optional 2 min.
break after completing it. Subjects were allowed to change their re-
sponses on the questionnaire at the end of each block, so that their
responses per block can be truly relative to one another. After com-
pleting the experiment, subjects were interviewed for around 10
min. about their experience with the experiment. Afterward, they
were thanked for participating, and offered a movie theatre ticket.

4. RESULTS

4.1 Subjective Workload
The modified NASA-TLX responses were analyzed within groups,
per type of gesture. For each modified NASA-TLX category, one-
way ANOVA repeated measures tests were conducted comparing
results from all error rates. A mixed between- and within-subjects
ANOVA revealed no significant differences between the two ges-
ture sets, and therefore not reported. Descriptive statistics (means,
standard deviations, 95% confidence intervals, p-values, partial eta
squared) of within-subject results for the mimetic and alphabet ges-
tures are shown in Table 1 and Table 2, respectively. Means and
confidence intervals for each category under mimetic and alphabet
gesture conditions are shown in Fig. 2 and Fig. 3, respectively.

Post-hoc pairwise comparisons (with Bonferroni correction5) be-
tween error conditions (Low-Medium, Low-High, Medium-High)
were conducted in every case. Where significant, they are repre-
sented in the graphs as bars between low and medium error rate
conditions, and as brackets between low and high error rates, with
the corresponding significance levels (**, p < 0.01; *, p < 0.05).

Mimetic Gestures
Category Error M SD 95% CI P -value η2p

Low 5.3 3 [3.6, 7] p= .098
Mental Med 5.8 3.3 [4, 7.7] F (2,22) = 2.6 .2

High 7.2 3.5 [5.3, 9.2]
Low 8 4.9 [5.3, 10.8] p= .365

Physical Med 7.7 4.5 [5.1, 10.2] F (2,22) = 1 .1
High 8.4 5 [5.6, 11.3]
Low 7.5 4.7 [4.8, 10.2] p=.119

Effort Med 7.7 4.4 [5.2, 10.3] F (2,22) = 2.3 .2
High 8.9 4.5 [6.4, 11.5]
Low 15.6 2.6 [14.1, 17.1] p<.05

Perform. Med 13.7 1.9 [12.6, 14.7] F (1.4,15.1) = 11.2 .5
High 10.3 4.4 [7.8, 12.8] (corr. G-G ε= .68)
Low 5.5 3.1 [3.7, 7.3] p<.001

Frust. Med 7.7 3.6 [5.7, 9.7] F (2,22) = 23.2 .7
High 10.7 4.3 [8.3, 13.2]
Low 13.3 2.7 [11.8, 14.9] p<.05

Pref. Med 11 2.6 [9.5, 12.5] F (2,22) = 5.1 .3
High 9.7 4 [7.5, 12]
Low 5.1 2.1 [3.9, 6.3] p<.001

Workload Med 5.9 2.2 [4.6, 7.2] F (2,28) = 13.2 .5
High 7.5 2.8 [6, 9.1]

Table 1: Descriptive statistics for mimetic gestures (N=12) under dif-
ferent error rates (Low, Medium, High).

Alphabet Gestures
Category Error M SD 95% CI P -value η2p

Low 5.8 3.1 [4, 7.6] p=.872
Mental Med 5.5 2.7 [3.9, 7.1] F (2,22) = .1 .01

High 6 2.2 [4.8, 7.2]
Low 10.2 3.4 [8.3, 12.1] p= .403

Physical Med 9.2 3.4 [7.3, 11.2] F (1.3,14.1) = .9 .08
High 10.8 3.2 [9, 12.7] (corr. G-G ε= .69)
Low 7.4 2.4 [6, 8.8] p<.05

Effort Med 8.8 2.9 [7.1, 10.4] F (2,22) = 6.8 .4
High 9.9 3.5 [7.9, 11.9]
Low 15.5 2.2 [14.2, 16.8] p<.001

Perform. Med 12.3 2.4 [11, 13.7] F (1.2,13.5) = 23.5 .7
High 8.7 4.7 [6.1, 11.4] (corr. G-G ε= .61)
Low 4.2 2.5 [2.8, 5.7] p<.001

Frust. Med 6.3 3.2 [4.5, 8.2] F (1.1,12.6) = 11 .5
High 9.6 5.6 [6.4, 12.8] (corr. G-G ε= .57)
Low 13.3 2.5 [11.9, 14.8] p<.05

Pref. Med 11.2 2.8 [9.7, 12.8] F (1.3,14.3) = 23.6 .7
High 8.3 3 [6.6, 10] (corr. G-G ε= .65)
Low 5.4 1.1 [4.7, 6] p<.001

Workload Med 6.2 1 [5.7, 6.8] F (2,22) = 16.5 .6
High 7.9 2.1 [6.7, 9.1]

Table 2: Descriptive statistics for alphabet gestures (N=12) under dif-
ferent error rates (Low, Medium, High).

Since there were no significant differences between the two ges-
ture sets, it appears to be that experimentally our wizard-of-Oz
recognizer for both gesture conditions had a similar effect on par-
ticipants, where statistically the two independent groups did not
treat the gesture sets differently. However, there were differences
between gesture sets with respect to the differences in error con-
ditions. Based on the within-subjects ANOVA results and post-
5Backward-corrected SPSS c© Bonferroni adjusted p-values are re-
ported.
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Figure 2: Modified NASA-TLX workload measurements for mimetic
gestures. Capped error bars represent a 95% confidence interval.
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Figure 3: Modified NASA-TLX workload measurements for alphabet
gestures. Capped error bars represent a 95% confidence interval.

hoc pairwise comparisons on the modified NASA-TLX scores for
mimetic gestures (Table 1; Fig 2) and alphabet gestures (Table 2;
Fig 3), we summarize our findings.
Results showed that while subjects in the alphabet gesture con-

dition had to place significantly more effort (Effort Expended) be-
tween the low error rate and the medium and low and high error
rate conditions, this was not so for the mimetic gestures. Addi-
tionally, for the mimetic gestures, Performance Level Achieved be-
tween the low and medium error rates was not significant, while
it was significant across all error rates for the alphabet gestures.
In the mimetic condition, Frustration Experienced was significant
across error conditions, however in alphabet gestures, Frustration
was significant only between Low-Medium and Low-High. This
shows that for alphabet gestures, frustration is more or less consis-
tently experienced beyond 20% error rates. Interestingly, Overall
Preference in the mimetic gesture condition fell significantly only
between the low and high error rates and between low and medium,
while it significantly dropped for each error rate in the alphabet
gesture condition. This hints at a feeling of helplessness in the face

of errors for alphabet gestures, possibly because fewer parameters
can vary for this gesture set when subjects repeatedly try to recover
from these errors and still fail.
Finally, Subjective Workload for subjects in the mimetic gesture

condition significantly differed only between low and high error
rate conditions, and between the medium and high error rate con-
ditions, while there were significant workload increases across all
error rates for subjects in the alphabet gesture condition. Together,
these findings suggest that mimetic gestures are better tolerated un-
der error rates of up to 40% (cf., [8]), compared with error rates of
up to only 20% for alphabet gestures. From a usability perspective,
our workload results indicate that mimetic gestures are more ro-
bust to recognition failure than alphabet gestures, likely due to the
higher design space available for users to experiment with given
their unfamiliarity with the ideal shape of the designed gesture.

4.2 Video Analysis
Observation of subjects’ behavior from the videos provided early
findings on how mimetic and alphabet gestures evolve under vary-
ing error conditions.

Mimetic vs. Alphabet Gesture Evolution. While evolution in ges-
ture performance for both sets was observed in as few as 2 suc-
cessive error trials (i.e., spiral depth of 2), less variation in gesture
performance was observed in the alphabet gesture condition. In
both conditions however, we observed that the continued successful
recognition of a gesture served as a continuos reinforcer for repeat-
ing a gesture in the same manner, irrespective of gesturing style. If
however a subject chose to experiment with a variation during those
success trials, then the variation was repeated on grounds that it will
work on a subsequent trial. We call this repeated gesture variation
the ‘canonical variation’. As shown below, these observations are
corroborated by subjects’ feedback during the interviews.
We observed the following canonical variations of mimetic ges-

tures under high error: S4’s Handshake canonical variant was ex-
tending his arm straight and swinging the Wii Remote up and down
as if it is a real hand he is reaching out to. S8 exhibited a variation
in the Trashing gesture, where the speed of the gesture increased
drastically and the end position was raised higher than shown in
the video. S10 arrived at the canonical variation of the Glass Fill-
ing gesture, which required a slow, calculated twisting of the wrist
while the Wii Remote was in the pouring position. S12 exhibited
variations on both Fishing and Trashing gestures: Fishing gesture
resembled real-world fishing, which involved lightly pulling the
Wii Remote diagonally upwards and then with slight force throw-
ing the Wii Remote back as if into an imaginary water pool. The
Trashing variation was a trashing gesture that was both small in
breadth and with almost no movement of the arm and shoulders.
For alphabet gestures, apart from brief intermittent experimen-

tation with breadth, speed, position, completeness and direction of
gestures, the main systematic variations observed were attempts to
draw the letter symbol more precisely under high error conditions
(cf., [17]). However, there was one subject who appeared to have
arrived at a canonical variation: the letter Z was drawn very quickly
with the last stroke (bottom line of a ‘Z’) more slanted.

Persistence vs. Evolution. When do recognition failures cause sub-
jects to persist in repeating the same gesture, and when to push
them to explore new gestures? From our observations, certain pat-
terns emerged: first, it seems that if a subject performs a gesture
quickly, and it fails, he will experiment with a slower version. If
he first performs it slowly, then he will experiment with a faster
version. Second, after repeated success trials, the speed of the ges-



ture is the first parameter to vary while the other parameters mostly
remain constant, irrespective of gesture class. Usually, though not
always, only after failure does exploration take place, where varia-
tions come into play. Third, if in a block subjects experience a se-
ries of successes (4-5), they will be more likely to repeat the same
gesture even in the face of repeated errors later in the block, irre-
spective of gesture class. This successive positive reinforcement
suggests that subjects have figured out what the recognizer wants
in that block. Additionally, if a gesture succeeds too many times in
succession (≥4), people seem to apply the principle of least effort
and perform incomplete gestures (as witnessed by a downsized ver-
sion of the Throwing gesture by S6 in the low error condition). This
was observed mainly in the alphabet gesture condition, where two
subjects later mentioned in the interviews that they did not need to
complete the gesture for recognition to take place.

4.3 Users’ Subjective Feedback
Perceived Canonical Variations. Many subjects (18/24) across
both gesture sets reported that in the face of repeated errors, they
would start experimenting with different variations of the gesture,
and when feedback was positive, they replicated that variation. This
suggests that positive reinforcement after repeated error trials was
the driving force behind the step-wise evolution of a given ges-
ture, or put differently, survival of the fittest gesture variation. Sup-
porting our observations, subjects reported much less variation in
how they performed gestures under high error rate conditions in
the alphabet gesture condition than in the mimetic condition. For
mimetic gestures, subjects reported many novel strategies for how
and when a given gesture was recognized (S9: “The shaking, that
was the hardest one because you couldn’t just shake freely [ges-
tures in hand], it had to be more precise shaking [swing to the left,
swing to the right]... so not just any sort of shaking [shakes hand in
many dimensions]"; S11: “What I noticed was that the fishing for
example, it was just a rotation [small upward wrist rotation], and
when you did it as if you were really fishing, then it didn’t work.").
In line with our hypothesis, the variations under the alphabet ges-

ture condition were perceived to involve a more precise and well
structured gesture for recognition to be successful (S17:“I think
within certain blocks I got the pattern of what was working. It was
more apparent in the third one [high error rate condition], you have
to do it better."). There were exceptions to this, mainly the draw-
ing of the letter O, which can easily vary (in addition to breadth
and speed) along the direction and the start/end position parame-
ters (S16: “I didn’t really change the way I did them [the gestures],
except for the O, to see different ways it can be written."). How-
ever, while variations that involved more rigid gesturing of letters
was both observed and reported by subjects, some subjects explic-
itly expressed arriving at the canonical variations of some letters
(S22: “In Z or S, I made them more rounded, and then it worked
better this way.").

Individual and Cultural Differences. For the mimetic gestures,
subjects found the Throwing and Glass Filling gestures the most
problematic (4 reports each). Throwing in particular appeared not
to be as intuitive as the other gestures, possibly because of the many
ways people can throw (S7: “I would have done the throwing ges-
ture differently [shows experimenter how different people throw]")
The mapping to real-world behaviors was evident when explain-
ing why the Glass Filling gesture is difficult (S10: “For the glass
filling, there are many ways to do it. Sometimes very fast, some-
times slow like beer.") Interestingly, the Shaking gesture, which
is already an input technique in some smart phones (e.g., Apple’s

iPhone 4 R©6), was not taken favorably by at least one subject: S4:
“Shaking was hard... how long should you shake? I tried here, and
it was enough to do two movements... and you have to use your
wrist, which can be a problem.").
Two subjects noted that the Fishing gesture was quite easy to per-

form, however the naturalness of the gesture backfired (S10: “In
the fishing gesture, I was just guessing how to do it. Because I
have never done it practically. I cannot really see myself perform-
ing well, just simulating it.") Likewise for the Trashing gesture:
(S10: “I was trying to emulate how I would normally do it. For
example trashing, sometimes you’re not in the mood, and you do
it like this [trashes imaginary object downward softly], very qui-
etly.") Together, these reports support our hypothesis that mimetic
gesture evolve into their real-world counterparts, especially when
under high error conditions. Due to the importance of cultural dif-
ferences in performing certain mimetic gestures, it would be in-
teresting to see whether these cultural forms are the first gestures
subjects recourse back to under error conditions.
For the alphabet gestures, the O and M alphabet gestures were

perceived to be the most difficult (6 and 5 votes, respectively). The
O gesture was perceived to be difficult on grounds that there are
many ways to write/draw an O (S17: “The O was a bit funny, be-
cause naturally I start from the top, not the bottom."). This was
likely a fault of how the videos in the experiment showed the ges-
turing of the O, which began from bottom to top. However, the
other reason for finding the O difficult was due to the completeness
and position parameters (S13: “For the O, I noticed that if I start
here [points in space] and I end here, and there is a gap, then it
wouldn’t be recognized."). There were no clear reasons given for
why the M gesture was difficult, other than hinting at the number
of strokes required (S14: “The M is more articulated, so you have
to spend more time on it."). V was perceived to be the easiest letter
to gesture, due to the ease by which it can be drawn. This was so
despite that V, like the O, varied along the direction parameter.

Perceived Performance. In general, subjects reported they were
pleased with their overall performance in both mimetic (7/12) and
alphabet (7/12) gesture conditions. Surprisingly, while all sub-
jects noticed the difference in difficulty across blocks, some sub-
jects in the mimetic gesture condition (6/12) and some in the al-
phabet gesture condition (7/12) seemed to treat their performance
on the low error rate and the medium error rate conditions as more
or less the same (S18: “Between the first and second blocks [low
and medium error rate conditions], it was the same... 10-15%"),
while attributing very poor performance to the high error rate con-
dition. The reason for this was likely due to the extremely high
error rate range (40-60%). This relates to the question of how poor
can performance of gesture recognition technology get before the
technology is abandoned in favor of well-established methods such
as keyboard-based input (cf., the 40% error threshold set by [8]).
Additionally, subjects showed an incredible ability to justify their

performance. If subjects fell into the high error rate condition first,
they attributed their poor performance to the fact that they are still
learning how to perform the gestures (S22: “In the beginning, it
was less because I was still learning."). By contrast, if the high
error condition comes later in the block, they attribute their poor
performance later due to not putting the kind of effort and attention
they did on the first block, which supposedly explains their better
performance earlier (S7: “For the third block [high error rate con-
dition]...I had done many already, I was like I’ll just do it and see
what happens."). This is in line with our video observations, where

6http://www.apple.com/iphone/; last retrieved: 15-08-2012



gesture performance was different in high error conditions where
gestures tended to evolve more for mimetic gestures (poor observed
performance) and get more rigid for alphabet gestures (acceptable
observed performance if canonical variation is right).

Use of Gestures on Mobile Phones. For mimetic gestures, when
asked whether they saw any real-world use of the tested gestures on
mobile phones, most subjects (10/12) reported at least one use-case.
For the Throwing gesture, a mapping to sending a message was
identified as a reasonable interaction method. Another example of
Throwing was mobile payment, where one could throw money to a
cashier. Similarly for the Handshake gesture, where the handshake
could be a form of digital content transaction or a form of business
e-card exchange. Trashing was implicated in hanging up a call,
deleting content, or what subjects did not favor, to turn off an alarm
clock by turning over the device. Subjects reported that shaking
was already available in some mobile phones used for switching to
the next song. However, some subjects expressed that some of the
gestures simply had no use (S4: “Trashing at a conference is quite
natural to turn off a call, but handshake, I can’t think of a use.").
When asked about using alphabet gestures on mobile phones

(e.g., gesturing ‘S’ for sending a message), only half of subjects
said they would use such gestures (6/12) (S24: “If there was a
phone with this, I would really like that!"), and some thought it
depended on the situation (3/12) (S19: “If you’re on your bike,
you could do that."). From those who would use such gestures,
they explicitly mentioned that they have to necessarily be free of
error (S20: “Yeah [I would use such a gesture], if it’s really fool-
proof.";). Reported use cases included gesturing P to pause a game,
C for calling or checking a calendar, or most reported, for travers-
ing an interface’s menu structure (S18: “If you need to access a
feature that is hidden away in the menu, like starting to write an
SMS, then gesture S"). Some subjects mentioned that the gestures
need to be explicitly different (S22: “Those gestures need to be so
different so you cannot do wrong gestures...V is part of M.") and
others required a distinct gesture-to-task mapping for each applica-
tion on your device ("S23: “The applications should not clash for
the same gesture."). Finally, one subject remarked that while these
alphabet gestures might work for the roman alphabet, it would be
radically different for chinese characters.

Social Acceptability. For both the mimetic and alphabet gestures,
some subjects (8/24) expressed concern over performing these ges-
tures in public. This is in line with previous work, which explic-
itly addressed the question of what kinds of gestures people would
perform while in public [18]. It was surprising to find that there
were very few concerns about performing mimetic gestures in pub-
lic (2/12) (S9: “I’m not sure [about Fishing], because I’m not fish-
ing myself, why am I doing this?"), as opposed to performing al-
phabet gestures (6/12) (S13: “If I am not in a public place, then
yes. Otherwise, you would think I’m a Harry Potter in disguise!").
While recognition errors play a clear role in preventing gesturing

in public settings (S16: “When it doesn’t take your C, you keep do-
ing it, and it looks ridiculous."), the breadth of a gesture was also
perceived as an important factor (S18: “Maybe if I do it small, if I
don’t look very freaky, then it’s okay."). Still, others thought it fun
to try novel things in public (S14: “I never thought about that [al-
phabet gestures], but why not? I would not find it embarrassing.").

5. DISCUSSION
5.1 Limitations
There are three potential limitations to the present study: first, since
our study was conducted in a laboratory, it had less ecological va-

lidity. While subjects explicitly stated that they would not be com-
fortable performing some gestures (especially alphabet gestures) in
public, from the videos it was evident that all subjects performed
all the instructed gestures freely and without hesitation. It is inter-
esting to consider here whether the desire to perform all gestures
successfully in each block could have overruled whatever embar-
rassment might come about from merely performing the gesture to
execute some device function. At least one subject explicitly men-
tioned the importance of performance (S9: “I eventually got the
hang of it, and yeah, I really, really wanted to improve my perfor-
mance!"). Additionally, gesture performance under failed recogni-
tion rates may not reflect performance when a user is mobile (e.g.,
walking or in public transport).
Second, while testing how task-independent gestures are affected

under varying error rates was an explicit design choice, it could
be that a gesture to task mapping is necessary for unraveling the
usability of a given gesture. While we agree that the task being
performed is an important variable in gesture-based interaction,
we nevertheless argue that there are differences between individual
gestures and importantly between gesture sets that can be unrav-
eled only by leaving out the task. This is to eliminate any potential
bias that the task might evoke. For example, calling someone might
be considered more urgent in some situations than skipping to the
next song, and that might influence the performance and workload
required from a gesture. Finally, our design choice in simulating a
gesture recognition engine as realistically as possible meant that the
errors had to be randomly distributed in each block. In future work,
experimentation with different error distributions would better help
understand different types of gesture evolution. Additionally, with
a real recognition engine, the precise evolution of the gesturing be-
havior may differ than what was observed in this study.

5.2 Implications for Gesture Recognition
Our observations and subject reports showed that mimetic gestures
and alphabet gestures do indeed differ under increasing recogni-
tion error conditions. While our observations and subject reports
showed mimetic gestures tend to vary more into their real-world
counterparts when they are repeatedly not recognized, alphabet ges-
tures tend to become more rigid and well structured. This is in line
with work on other modalities like speech and handwriting recog-
nition [16, 14]. This suggests that for gesture-based interaction to
be accepted in the consumer market, accurate recognition from the
first attempt appears to be quite important for mimetic gestures. If a
gesture is not recognized from the first instance, there is a risk that
the subsequent gesture differs radically from the first, which would
be beyond the scope of the recognition algorithm. This is in con-
trast to alphabet gestures, which in having lower degrees of free-
dom vary in fewer parameters (mainly speed, breadth, and start/end
position) under error conditions. This suggests that recognition en-
gines (in uni- or multimodal systems) can more easily deal with
post-failure recognition when this set of gestures is used.
Additionally, subjects had no real means to understand the cause

of the errors, to avoid errors, or to improve recognition rates. How-
ever, they came up with interesting explanations (e.g., canonical
variations) why there were more errors in different blocks and what
might have caused them (e.g., fatigue). Nevertheless, we observed
that they were also active in adapting their gesturing behavior in
order to improve recognition errors and to understand the workings
of the recognition engine. This seems to suggest that transparency
in the gesture recognizer may better support users in their error
handling strategies during situations of failed recognition.



5.3 Implications forGesture-based Interaction
It was evident from our results (modified NASA-TLX workload
data, video observations as well as subjects’ feedback) that not only
do mimetic gestures vary differently than alphabet gestures under
error conditions, but also there were differences between individ-
ual gestures under each class. We found that while mimetic ges-
tures yield significant increases in overall subjective workload be-
tween low and high error rates, and between medium and high error
rates, overall workload for alphabet gestures significantly increased
across all error rate conditions. This indicates that mimetic gestures
are better tolerated under error rates of up to 40%, while alphabet
gestures incur significant overall workload with up to only 20%
error rates. This is in line with previous work on computer vision-
based gesture interaction [8], where our workload results suggested
user error tolerance of up to 40% for the mimetic gestures only.
The two gesture sets also differed in potential use and social ac-

ceptability. For mimetic gestures, interesting use cases (e.g., hand-
shake for digital content exchange, throwing for mobile payment)
were given, while limited use cases (e.g., interface menu structure
traversal) were offered for alphabet gestures. Moreover, alphabet
gestures were seen as more embarrassing to perform in public, es-
pecially if they are not recognized. From a usability perspective,
these findings suggest that mimetic gestures are more promising
than alphabet gestures for use during device-based gesture interac-
tion, even under conditions of medium recognition error.

6. FUTUREWORK & CONCLUSIONS
A follow-up quantitative study is required to unravel exactly how
many errors in succession are required before a given gesture evolves
into its canonical variant. While we have presented a qualitative
analysis of gesture evolution, quantitative models of the precise
evolution behavior would help identify the exact parameter changes
across error conditions. Future work will also address how errors
influence gesture performance of other gesture sets (e.g., metaphoric
and manipulative gestures), and for different device form factors.
In this paper, we described the results of an automated Wizard-

of-Oz study to qualitatively investigate how mimetic and alphabet
gestures are affected under varying recognition error rates. In line
with our hypothesis, it was shown that mimetic gestures, which
have a less familiar ideal shape, tend to evolve into diverse real-
world variations under high error conditions, while alphabet ges-
tures tend to become more rigid and structured. Furthermore, we
showed that mimetic gestures seem to be tolerated under error rates
of up to 40% (cf., [8]), while alphabet gestures incur significant
overall workload with up to only 20% error rates. From this, we
drew usability implications showing the importance of immediate
accurate recognition of mimetic gestures (as a way of taming the
tendency of these gestures to evolve) and suggested they are better
suited than alphabet gestures for inclusion into mainstream device-
based gesture interaction with mobile phones.
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