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ABSTRACT
Facial thermal imaging has in recent years shown to be an efficient
modality for facial emotion recognition. However, the use of deep
learning in this field is still not fully exploited given the small num-
ber and size of the current datasets. The goal of this work is to
improve the performance of the existing deep networks in thermal
facial emotion recognition by generating new synthesized ther-
mal images from images in the visual spectrum (RGB). To address
this challenging problem, we propose an emotion-guided thermal
CycleGAN (ET-CycleGAN). This Generative Adversarial Network
(GAN) regularizes the training with facial and emotion priors by
extracting features from Convolutional Neural Networks (CNNs)
trained for face recognition and facial emotion recognition, respec-
tively. To assess this approach, we generated synthesized images
from the training set of the USTC-NVIE dataset, and included the
new data to the training set as a data augmentation strategy. By
including images generated using the ET-CycleGAN, the accuracy
for emotion recognition increased by 10.9%. Our initial findings
highlight the importance of adding priors related to training set
image attributes (in our case face and emotion priors), to ensure
such attributes are maintained in the generated images.
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1 INTRODUCTION
In the recent years, automatic facial emotion recognition has at-
tracted more attention due to the wide range of applications that
benefit from it [1, 22, 26]. Most of the work on facial emotion recog-
nition is carried out using images from the visible spectrum, but
these images are sensitive to illumination changes, which can influ-
ence the performance of the emotion recognition approaches [18].
Thermal imaging records facial temperatures and is thus unaffected
to illumination changes. This property indicates that emotion recog-
nition from thermal face images may be more feasible for certain
applications and situations, such as recordings during the night or
under poor illumination during the day [10].

Although facial emotion recognition in the thermal spectrum has
attracted more andmore attention in the recent years [5, 15, 24], it is
still a challenging task. One of the main reasons is the small amount
of data available. Nowadays, very few datasets of facial images in the
thermal spectrum are annotated with emotions. In contrast, in the
last few years, several large datasets of visible images for emotion
recognition were made available, such as FER2013 [8], EmotiW [6]
and EmotioNet [2]. The amount of public data combined with the
recent breakthroughs with Convolutional Neural Networks (CNN)
[21], boosted the performance of emotion recognition from visible
images [17]. Hence, we hypothesize that increasing the amount of
data for emotion recognition from thermal face images may lead to
an improvement of the performance.

The aim of this early work is to develop a novel Generative
Adversarial Network (GAN) that, given a face image from the visi-
ble spectrum, transforms the image to the thermal spectrum pre-
serving the present emotion and the facial traits. We present an
emotion-guided thermal CycleGAN (ET-CycleGAN) to regularize
GAN training with emotion priors in order to generate synthesized
thermal images for facial emotion recognition. Specifically, the emo-
tion priors are extracted from a network trained for facial emotion
recognition in thermal imaging, and used to compute an emotion
features loss function during the training of the GAN. The original
CycleGAN [29] has demonstrated state-of-the-art results in facial
image synthesis without the constraint of using paired aligned
training data. This is particularly suitable in our case because the
visual and thermal images in the available thermal datasets are
recorded from different points of view and are, as a consequence,
unaligned. In summary, the main contributions of this work are:

• We propose the ET-CycleGAN, a GAN that uses a facial and
emotion priors that regularize the training in the mapping
from visual to thermal face images.

• We demonstrate that by including the thermal images gener-
ated by the proposed GAN in the training process of a facial
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emotion recognition network, results improve. We investi-
gate the impact of the different losses of the proposed GAN
in the training.

2 RELATEDWORK
In the last few years, thermal imaging has attracted the attention
of the community in affective computing due to its potential use
in certain conditions [7]. Due to the small size of thermal datasets,
most of the works in the literature used hand-crafted features to
train a classifier. Latif et al. [14] presented a method for thermal
image feature extraction using the Gray Level Co-occurrence Ma-
trix, with a classification accuracy of 99.1%. Nguyen et al. [19] used
features extracted from regions of the face, with a performance
of 89.9%. Kopaczka et al. [13] achieved their best results (75.5%
accuracy) using SVM together with dense SIFT. Fewer works have
focused on deep approaches. Wang et al. [23] proposed to use the
deep Boltzmann machine to learn features from thermal facial im-
ages, achieving an accuracy of 62.9%. Lee et al. [16] proposed a
CNN for detecting emotion to identify aggressive driving using
input images of the driver’s face, obtained using near-infrared light
and thermal camera sensors, showing a performance of 99.9%. Ka-
math et al. [12] proposed a customized CNN network that uses the
weights obtained from the VGGFace[20] model and is fine-tuned
using thermal images. The results show a performance of 96.2 %.
Direct comparison among these works is not possible since they
validated their methods using different (and in most cases private)
thermal datasets. Only the works of He et al. [9] andWang et al. [28]
evaluated their methods using the USTC-NVIE [25] dataset, which
is the dataset used in our work. However, [9] used only images
for disgust, fear, and happy. In [28] they classified the 6 emotions,
but only from 22 randomly selected subjects. To the best of our
knowledge, none of the methods in the literature deal with the
generation of synthesized thermal face images for facial emotion
recognition. Our proposal is inspired by [27] and [4], in the way
they include networks to compute losses during the training of the
GAN.

3 PROPOSED APPROACH
In this work, the proposed ET-CycleGAN is based on an existing
GAN model, known as CycleGAN. Our main interest is to generate
synthesized thermal face images for emotion recognition purposes.
We add constraint to the CycleGAN model by including two loss
functions: facial and emotion features loss. The facial features loss
function aims to guide the learning to generate visual face images
that preserve the facial composition. The emotion features loss
function encourages the mapping of the thermal face images to
ensure that it is consistent in terms of emotion. The proposed
method is depicted in Figure 1.

The loss functions involved in the proposed ET-CycleGAN are
defined as follows:

Adversarial loss: The adversarial loss function LGAN is de-
fined as in [29]:

LGAN (G,D) = min
D

max
G

{Ey [logD(y)]}

+ Ex [log(1 − D(G(x)))]
(1)

whereG is the generator andD the discriminator, which are trained
following a minimax game strategy. x ∈ X is the visual image and
y ∈ Y is the target thermal image. The goal of G is to synthesize
thermal images from visible images, while D aims to distinguish
the target thermal images from the synthesized ones. In CycleGAN,
X and Y are two different image representations, and the network
learns the translation X → Y and Y → X simultaneously.

Cycle consistency loss: The cycle consistency loss function
LC is defined as in [29]:

LC (GX→Y ,GY→X ) =∥ GY→X (GX→Y (x)) − x ∥1
+ ∥ GX→Y (GY→X (y)) − y ∥1

(2)

Identity loss: The identity loss function LI is defined as in [29]:

LI (GX→Y ,GY→X ) = Ey [∥ GX→Y (y) − y ∥1]

+ Ex [∥ GY→X (x) − x ∥1]
(3)

Facial features loss: The facial features loss function LF is
defined as follows:

LF (GY→X ) = Ex ,y ∥ ϕF (GY→X (y)) − ϕF (x) ∥1 (4)
where ϕF denotes the features extracted from multiple layers of the
VGG-19 network pre-trained on the VGGFace2 [3] as used in [4].
LF ensures that the synthesized visual image in the cycle training
contains facial features that are similar to the ground-truth image.

Emotion features loss: The emotion features loss function LE
is defined as follows:

LE (GX→Y ) = Ex ,y ∥ ϕE (GX→Y (x)) − ϕE (y) ∥1 (5)
where ϕE denotes the features extracted from the ResNet-50 net-
work pre-trained with thermal images of the USTC-NVIE [25]
dataset for facial emotion recognition. LE ensures that the syn-
thesized thermal image contains emotion-related features that are
similar to the thermal ground-truth image.

Full objective: The loss function of the ET-CycleGAN is defied
as:

L(GX→Y ,GY→X ,DX ,DY ) = LGAN (GX→Y ,DY )

+ LGAN (GY→X ,DX )

+ LC (GX→Y ,GY→X )

+ LI (GX→Y ,GY→X )

+ LF (GY→X ) + LE (GX→Y )

(6)

4 EXPERIMENTAL RESULTS
To assess the effectiveness of the proposed GAN, we conducted ex-
periments using the posed expressions partition of the USTC-NVIE
[25] dataset. This dataset contains both spontaneous and posed
expressions of 105 subjects, which were recorded simultaneously
by a visible and an infrared thermal camera. The images are labelled
with 6 discrete emotions: angry, disgust, fear, happy, sad, and sur-
prise. In this work, it is used to generate the synthesized data and
evaluate their influence in the facial emotion recognition task. Since
our goal is to generate emotion-related thermal images of faces,
we discovered that the spontaneous expressions were too subtle,
leading to a generation of neutral faces in most of the cases. Given
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Figure 1: Flowchart illustrating the training of the proposed ET-CycleGAN. In contrast with the original CycleGAN, we in-
cluded two new losses: facial and emotion. The facial network accepts the synthesized and the real image in the visible spec-
trum to compute the facial features loss, while the emotion network takes the synthesized and real thermal image to compute
the emotion features loss.

the low number of subjects, a 10-fold cross-validation strategy was
followed in all the experiments granting that images from the same
subject were not present in both validation and training sets.

4.1 Implementation details
The proposed GAN builds upon the Pytorch implementation of
the CycleGAN. For the Generator we used 9 ResNet blocks, and
for the Discriminator we adopted the PatchGAN [11] architecture
with 3 layers. For the facial network we used a VGG-19 pre-trained
with the VGGFace2 dataset. As in [4], the extracted features are
obtained from the relu1-1, relu2-1, relu3-1, relu4-1, and relu5-1 layers.
For the emotion network we used a ResNet-50 pre-trained with
the VGGFace2, the FER2013 [8], and the USTC-NVIE-posed. For
this network, the features are extracted from the last layer of the
network. The GANswere trained during 200 epochs, with a learning
rate of 0.0002 that was linearly decayed after 100 epochs. Since
training a CycleGAN involves training four CNNs at the same
time (two generators and two discriminators) and we included
the forward passing of two more CNNs (VGG-19 and ResNET-50),
only one image per batch could be fitted in an Nvidia GeForce
RTX 2080 Ti during training. The training time per experiment is
approximately 10 hours.

4.2 Quantitative evaluation
The aim of this work is to generate new synthesized thermal face
images to improve the training of deep learning models in emotion
recognition. To verify the effectiveness of the generated images, we
included them in the training process and evaluated their impact on
the learning of the network. Following a 10-fold-cross-validation
strategy, for each fold we include in the training the generated
images by the GAN for the other folds. For instance, for fold 0,
the generated images for fold 1 to 9 were added to the training
data (∼ 415 images), for fold 1 the images generated during fold
0 and from 2 to 9, and so on. This way, no similar images were
simultaneously used in the training and test set.

To assess the performance in facial emotion recognition, we used
the same architecture as used in extracting features for the emotion
loss in ET-CycleGAN. The network was trained using a training
batch of 32 images, rescaling the images to a size of 224 × 224.
Given the difference between domains in the pre-trained network

Method Accuracy F1 score
(mean ± 95% CI) (mean ± 95% CI)

Baseline 0.401 ± 0.038 0.376 ± 0.040
CycleGAN 0.489 ± 0.046 0.477 ± 0.047
ET-CycleGAN 0.510 ± 0.039 0.487 ± 0.041

Table 1: Results of emotion classification after including the
synthesized images generated for each method. The base-
linemethod refers to the results obtained without including
synthesized data. Results reported in average for the 10-fold-
cross-validation with the 95% Confidence Intertval (CI).

Figure 2: ROC curves for emotion classification after adding
synthesized images. Baseline denotes resultswithout includ-
ing synthesized data.

and the data (visual to thermal), a learning rate of 0.01 was used
along the entire training process. Batch normalization was used to
prevent overfitting. An early-stopping approach was used with a
maximum of 200 epochs. Table 1 summarizes the obtained results
including images generated by the proposed ET-CycleGAN and
the CycleGAN, and compares them with the results obtained when
no synthetic images are added in the training. In a similar man-
ner, Figure 2 shows the Receiver Operating Characteristic (ROC)
curves and their corresponding area (AUC), and Figure 3 the con-
fusion matrices. The quantitative results show that including new
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Figure 3: Confusionmatrices for emotion classification after
adding synthesized images.

Method Accuracy F1 score
(mean ± 95% CI) (mean ± 95% CI)

ET-CycleGAN ⊖LF 0.490 ± 0.044 0.485 ± 0.065
ET-CycleGAN ⊖LE 0.502 ± 0.037 0.483 ± 0.033
ET-CycleGAN 0.510 ± 0.039 0.487 ± 0.041

Table 2: Ablation study results. Results of emotion classifi-
cation after including the synthesized images generated for
each method. ⊖ denotes the removal of the corresponding
loss function. Results reported in average for the 10-fold-
cross-validation with the 95% Confidence Intertval (CI).

synthesized images in the training process improves the results of
the facial emotion recognition network up to 10.9%. The proposed
ET-CycleGAN generated the best images to improve the perfor-
mance of the emotion recognition network. The inclusion of the
facial and emotion losses contribute to a generation of images that
preserve the facial composition and is consistent in terms of the
present emotion. The confusion matrices show that ET-CycleGAN
improves for disgust, happiness, and surprise, while for the other
emotions results are almost the same as CycleGAN.

4.3 Ablation study
To demonstrate the effectiveness of the different loss functions
included in the proposed ET-CycleGAN, an ablation study was
conducted. Following the experimental procedure detailed in the
previous section, we evaluated the performance of an emotion
recognition network including the images generated by the ET-
CycleGAN without each of the loss functions. The results of this
study are shown in Table 2. ET-CycleGAN ⊖LF corresponds to the
proposed method without the LF loss function, and ET-CycleGAN
⊖LE without the LE loss function. As it can be seen in Table 2, the
emotion loss function LE contributes slightly to the improvement,
while the addition of the face LF loss function results in a more
pronounced improvement in the performance.

4.4 Qualitative evaluation
In the previous section we showed that including images generated
with ET-CycleGAN improves the results for disgust, happiness, and

(a) (b) (c)

Figure 4: Comparison of the generated images. First row
shows an example of disgust, second row happiness, and
third surprise. (a) Shows the the input RGB images, (b) the
results for CycleGAN, and (c) the results for ET-CycleGAN.

surprise. In this section we show an example of the visual differ-
ences of these three emotions. Figure 4 presents examples of three
images of different subjects, and their corresponding synthesized
images using CycleGAN and ET-CycleGAN. The differences are
subtle, but for the first image we can see that ET-CycleGAN was
able to preserve the expression of the mouth. For the second exam-
ple, ET-CycleGAN generated an image that shows the rise of the
cheeks during the smile. Finally, in the example for surprise, our
method depicted the opened mouth with a darker color.

5 CONCLUSIONS AND FUTUREWORK
This work intends to tackle an unresolved challenging problem,
which is the generation of synthesized images to improve the per-
formance of facial emotion recognition using thermal face images.
The main limitation of this work is intrinsically related to the fact
that we face a chicken and egg kind of problem: we want to gener-
ate images because the available datasets are too small to train deep
networks, but in order to generate these images we need to train
deep networks. Therefore, the obtained results are constrained by
the dataset used in the experiments. We have presented a novel
synthesis-based method for generating thermal images from images
in the visible spectrum using a GAN-based approach. The proposed
ET-CycleGAN method includes facial and emotion features loss
functions that regularize the training. Initial results showed that
this contribution improved the quality of the generated synthesized
thermal images. The generated images were included as a data
augmentation approach in the training of an emotion recognition
network for thermal face images. The images generated by the pro-
posed approach led to a better performance of the network. These
findings highlight that adding priors related to the image attributes
(in our case face and emotion priors) helps to ensure such attributes
are maintained in the generated images. Future work would focus
on exploring new modifications in the proposed GAN to allow us
to use data from different thermal datasets and, as a consequence,
improve the generalization capacity of the network.
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