
Modeling Nomic in LKIF-Core ontology.

Marc Bron, Abdallah El-Ali, Xingrui Ji, Szymon Klarman

September 29, 2007

Leibniz Center for Law

Contents

1 Introduction 2
1.1 LKIF-Core . 2
1.2 The Game of Nomic . 2

2 Overview of Taxonomy 3

3 Model and Modeling Approach 5
3.1 Methodology . 6
3.2 LKIF Skeleton . 6
3.3 Nomic in LKIF Skeleton . 7
3.4 Temporal Aspects of Nomic . 11
3.5 Remarks on Modeling Nomic Scenarios 16

4 Summary 18

Appendix 20

This report, part of ESTRELLA project, presents results of the work
on building an OWL model of Nomic rules, based on the LKIF-Core
ontology. The primary aim of the task was to test capabilities of the
LKIF-Core in modeling a sample piece of legislation. In the report
we discuss the structure of the proposed representation, explain the
modeling approach and elucidate the role of LKIF-Core in the model.

1

1 Introduction

1.1 LKIF-Core

LKIF-Core is an upper- or core ontology of legal terms, essentially intended to
support top-down knowledge acquisition and representation of domain ontolo-
gies. Despite that an upper ontology such as LKIF-Core serves the purpose of
providing the initial structure (comprised of super-classes) for a given domain
ontology (such as the game of Nomic, as we shall see below), it is often the
case that the concepts defined are highly abstract and relatively legal-domain
independent. The highly abstract concepts, however, allow one to use LKIF-
Core (as it covers the basic concepts of law) to assess similarities and differences
in particular legal domains of differing jurisdictions, while simultaneously not
being exclusively for or about law.

In what way can LKIF-Core be used, or rather, what role does such an
upper ontology play? In the context of modeling the game of Nomic, we place
emphasis on two primary roles of LKIF-Core (see Deliverable 1.4, [1], for a
detailed account of the different uses of upper/core ontologies): To organize
and structure information, and to do reasoning and problem-solving.

The first role, as briefly mentioned earlier, concerns pre-structuring the de-
velopment of a domain ontology, by allowing for top-down knowledge acquisition
to subsume most or all domain-specific terms as sub-classes of the more abstract
concepts defined initially in the upper ontology. For example, the definition of
norm in LKIF-Core serves as a broad concept that subsumes specific norms in
some legal domain.

The second role concerns the representation of knowledge in a domain by
which automated reasoning is made possible, by representing problems and
generating solutions for those problems. The ontology in this case functions as a
terminological part of a knowledge base that enables understanding of assertions
made about the problem situation to be solved. For example, one is able to write
the relationships between defined terms that provide deontic qualifications such
as obligations and prohibitions in norms, allowing the reasoner to use these
axioms to identify violations in a regulation that contains these norms. How
LKIF-Core assumes these roles in practice and what the top-level concepts are
will be further discussed in Section 3.

1.2 The Game of Nomic

Nomic (from the Greek νóµoζ (nómos), which means law) is an abstract game
of rule-making and legislation, that was first invented by Peter Suber in 1980
(Vreeswijk, [2]). The central idea behind Nomic is to change the rules of Nomic.
The self-modifying game of Nomic could be thought of as a complete microcosm
of a functioning legal system. The parallel between Nomic and a legal system
holds at the level of rules in the game, where changing the rules of the game

2

itself is a move in Nomic. Nomic, a two-tiered system, designed as such for the
sake of simplicity, contains an initial set of rules that contains on the one hand
immutable rules, which govern more basic processes and are thus more difficult
to change, and mutable rules, which are more susceptible to change. For exam-
ple, while a mutable rule can immediately be amended during a given turn by
a player, this is not so for an immutable rule, which first requires a player to
transmute it into a mutable rule before further change can take place.

In modeling the game of Nomic in LKIF-Core, two distinctions in the mod-
eling approach are to take effect: modeling Nomic as a multi-player game qua
game, and modeling Nomic as a piece of legislation. The former taps on the
notion that a game has a sequential ordering of events which must be modeled,
while the latter surfaces the difficulty in modeling the game rules as norms, that
allow or disallow certain actions or situations to occur. To elucidate, consider
how in each turn the rules of the game change. These changes must be repre-
sented temporally taking into account the history of each player’s moves and
representing it at a current moment in time.

For example, Rule 202 explains the basic setup for playing: For a given
turn, a player can propose a rule change and have it voted on, and if the vote
succeeds, the change will be implemented the following turn. Since this rule
can be changed, the game is (potentially) no longer the same game the players
started with, since the game has now differing deontic criteria with respect to
voting, rule changes, or whatever the new self-modifying rule that was voted
on now dictates. This essentially highlights the legislative features inherent in
the self-reflexive game of Nomic, and modeling it thus requires maintaining a
balanced understanding of the game as an abstract game played by a number of
players, and a continuously changeable legal game where the laws in the game
are ultimately subject to change if so wished by the players.

2 Overview of Taxonomy

When building an ontology of a certain domain for a particular purpose, the
first step is to identify the main concepts. More concepts can later be added in
order to add detail to the model. The amount of detail depends on the domain
and the purpose of the ontology. Modeling the entire game of Nomic, although
an interesting goal in itself, is too huge a task for the purposes of this project.
Instead, a number of core, most representative elements from the game of Nomic
have been selected.

To be able to use Nomic as an example of how legislation could be modeled,
the game has to be stripped to its core. It is important that this core keeps its
characteristics that make Nomic a good example for modeling legislation. The
concepts that have been selected capture these characteristics.

3

Rules: Every game consists of rules — without rules, there is no game. From
this initial set of rules the core concepts in the game can be identified. There are
for example players, turns, actions and things manipulated by actions. Besides
concepts, rules also define the status of rules e.g. that rules can be mutable or
immutable.

In the model, a rule is represented as an individual of the class Rule. This
individual is linked to a specific part of the model that represents what is ex-
pressed by the rule. The link is the qualification of this part by the rule, either
allowing or disallowing it explicitly or allowing it simply by stating its existence
e.g. the concept of a player is never explicitly allowed, but used everywhere. The
separation between a rule and what is regulated by that rule allows statements
to be made about rules in general or about individual rules without changing
the implementation of the rule. Some concepts in the model are regulated by
multiple rules. In this case, all these rules contribute a little to that concept
and will be linked to it.

Players: To play the game it is necessary to have players - without them,
Nomic might still be considered a game, albeit a game that is never played.
The concept of a player is introduced as a role that is played by a person who
plays the game. Differentiating between a person and its role is needed because
during the game the concept of player can change, while the person playing the
game will remain the same.

Players are modeled as individuals under the class Player and linked to in-
dividuals under the class Person. To allow playing the game, a person has to
be a player. What kind of conditions have to be met to be a player is hard to
define e.g. are you still a player if you cheat, do not intend to play the game or
plan to sabotage the game? Usually there will be some agreement between the
people planning on playing a game, on who the players will be and thus, this
information can just be asserted into the model.

Turns: The period during which a game is played, is usually divided in a num-
ber of turns. A turn is then a limited period of time used by a player or multiple
players to perform some actions. As actions change the state of the game, the
step from a turn to the next one represents the change of one state to another.
So turns actually refer to certain states and impose an order on them. This
can be used to keep track of time in the game. For example, if a state that
exists in a certain turn changes, then the next turn refers to the resulting state,
while the previous turn still refers to the old state. A turn can also be divided
into smaller parts e.g. a proposing phase, a voting phase, and a scoring phase.
To reduce the complexity of the game however, only whole turns are considered.

When modeling Nomic, there is a turn which is the current turn that defines
the current model of the game. The history of the game is known until the
current turn, which is then also the last (known) turn. The previous states can

4

be revisited by changing the current turn to an older turn, hence referring to an
older model. The last turn however will still be the last known turn. The link
between the turns and parts of the model will be further explained in section 3.4.

Actions: The things that give a game its character are the actions that are al-
lowed by rules. The action that best characterizes Nomic is the ability to change
the rules. Most of the other actions are needed to create the requirements to
perform a rule change. Therefore we decided to model only two actions: 1)
changing a rule, i.e. amending, enacting, transmuting or repealing a rule, and
2) voting on a proposed rule change.

The other actions are modeled implicitly in that their results have to be
asserted into the model. Those results will serve as requirements for the modeled
actions. For example, while the action of proposing a game proposal is not
included in the model, an appropriate instance of a proposal, however, has to
exist before a rule change can be performed.

3 Model and Modeling Approach

The basic goal of the project is to extract and formalize the ontology of Nomic’s
concepts, as found in the Initial Set of Rules, and embed it in the LKIF-core
ontology of basic legal terms. While approaching the task we have encountered
some difficulties, stemming from a very uncommon character of Nomic, which,
though not directly related to the original goal, seemed to be very interesting
and potentially of some significance to Knowledge Representation practice in
general. We therefore decided to address them as well, and incorporate the
proposed solutions into our model. The two supplementary goals that directed
our modeling approach along with the primary one are:

1. To develop a consistent and reasonably efficient strategy for handling
changes in the represented knowledge, which may take place during a
game, while retaining the ability of referring to the relevant parts for the
different stages of the game.

2. To establish a practical approach to modeling actual game scenarios and
provide some convenient means of validating consecutive stages of a game
both while modeling a game in progress and after completing a whole
scenario.

In the following subsections we will first give a detailed account of the structure
of the ontology, justifying each of our choices, indicating the links to concepts
in LKIF, and explaining the general modeling approach with a special emphasis
on the role of the reasoner. Then we will turn to the issues pertaining to the
problem of handling the knowledge changing over time.

5

3.1 Methodology

The approach taken in building the model can be described as a compile-and-
debug method, as often seen during programming. An even better description
in this case would be a create-and-classify method. Only checking the definition
of newly added concepts by asserting the type and checking if the ontology is
consistent, is a less stricter way of checking the definition of a concept than to
let the reasoner infer the type of concept by classification.

This approach works as follows: every time a concept is defined with neces-
sary and sufficient conditions, the reasoner is ran to check if the concept gets
classified correctly i.e., placed in the correct place in the ontology. If this is so
the specific subclass relation is asserted. Next, an individual for this concept is
created and the reasoner is again ran to check if the individual gets classified
under the correct concept (see also section on Modeling Scenarios).

In the approach adopted, there is a strong reliance on the role of the rea-
soner while building the model. To keep this process tractable, the reasoning
process should not take too long. Since the LKIF ontology in which the Nomic
concepts are placed is by itself a large and complex ontology, it takes some time
to complete the reasoning. When the Nomic concepts are added to this, the
reasoning time quickly becomes intractable for the purpose of checking concept
definitions. To reduce the reasoning time, a stripped down version of LKIF was
created: LKIF Skeleton.

3.2 LKIF Skeleton

The quick growth in reasoning time in LKIF is partly caused by the fact that
none of the concepts are disjoint. Disjointness reduces reasoning time because
an individual that gets classified under concept A does not have to be matched
to any other concept that is disjoint with A. If disjointness between two con-
cepts is asserted very high up in the ontology, large branches of the concepts do
not have to be searched. As the top of the ontology is defined by LKIF and it
has no disjointness between its concepts, adding Nomic concepts to it results in
very large branches of individuals and concepts.

In LKIF Skeleton only the concepts from LKIF-Core that are relevant for
the modeling of Nomic are used, because all the relations and concepts in LKIF
that are needed in the top of the ontology can be made disjoint. The LKIF
Skeleton top consists of the following concepts:

Agent: is disjoint with all the other concepts in LKIF Skeleton. In LKIF this
is not the case because an agent can also serve as a medium for beliefs or inten-
tions. An agent having some belief would then be classified as a medium e.g.
the bearer of some belief. As beliefs are not used in the Nomic core, Agent and
Medium are made disjoint. An agent can also be an actor in an action or play

6

a certain role.

Qualified: is disjoint with Agent and Abstract Concept. Something that is
qualified (allowed or disallowed) by some norm, will be classified as Qualified.
Actions can be allowed or disallowed by norms, and so in order to get classified
as Qualified, this concept cannot be disjoint with Change, as actions are a sub-
concept of Change.

Change: is disjoint with all concepts except Qualified. The concept of Change
holds dynamic concepts i.e., processes as a subclass of Change, and actions as a
subclass of Process. The Action concept requires at least one actor to partici-
pate in the action. Besides actors, an action can have relations to other concepts
of which the most important are: Requirements, Resources and Results. These
relations to other concepts can define a certain action.

Abstract Concept: only holds the concept of Time Interval and is disjoint
with all other classes.

Mental Concept: is disjoint with Agent, Abstract Concept and Change and
holds many important concepts: Role, Norm, Proposition and Expression.

A Role is a direct subclass of Mental Concept and it can be related with an
Agent. Associated with a Role is certain behavior i.e. actions that are allowed
for the agent playing the role.

Mental Object is another direct subclass of Mental Concept. It holds the
concept of a proposition and a qualification. A proposition is the content of an
assertion. If a proposition exists on some medium i.e., a document, then it is
an expression.

A qualification expresses a judgement about some thing, where this thing
could be a proposition. Norm is a subclass of Qualification and the content of
a norm qualifies things by allowing or disallowing it.

3.3 Nomic in LKIF Skeleton

Now that the interpretation and intended use of the concepts of LKIF Skeleton
have been introduced, the placement of Nomic concepts in this ontology can be
explained.

Agent and Person: An agent who plays certain roles is allowed to take certain
actions. A person is an agent. A person who plays the role of a player is allowed
to take actions in Nomic. Besides individual people, organizations can also be
agents. In Nomic, a group of players can vote on some proposal. That group
then has to consist of only those people that have the role of player.

7

Agents can perform actions — the most important property that relates
agent concepts to other concepts in Nomic is the actor_in property. It asserts
that a person or group is an actor in a certain action.

Action, Rule Change and Vote: A process is some kind of change and
actions are some kind of processes. An action requires at least an actor —
someone to perform the action. Other properties are requirement, something
that is needed for the action to occur, a resource, something that is used up
during the action and a result, which is something brought about by the action.

As an example, consider the concept Vote that is a Nomic action. It has a
requirement relation to a Game_Proposal, which means that there has to be
a proposal before a vote can take place. The result of this vote action is some
Voting_Status, that holds the outcome of the vote. Finally there has to be
an agent, in this case a group of players that are also voters, who are able to
perform the vote action.

The other main action in Nomic is a Rule_Change, it consists of the follow-
ing four actions: Repeal, Transmutation, Enactment and Amendment. Each of
these actions are defined by their properties: requirements, results, etc...

For the Amendment action the resource is a Rule that is mentioned in an
Amendment_Proposal as being the subject of an amendment. This rule does
not exist anymore after the action. The result is a Rule that is proposed by
an Amendment_Proposal. This action further requires an Amendment_Proposal
that proposes and amends the already mentioned rules. The action is performed
by some actor that is a Person that plays a Game_Role. This last property is
actually inherited from Game_Action.

Note that Amendment_Proposal is mentioned three times in the properties

8

of an Amendment. It is intuitively clear that this should be the same proposal,
for a reasoner however this is not the case. There could for example be two
different instances of Amendment_Proposals, each amending and proposing dif-
ferent rules. In such case the first proposal could be used for the result and the
second one for the requirement. The rule that is proposed by the first proposal
is then different from the rule that is the result of the action.

In principle, this problem could be solved only by use of bound variables,
not allowed by OWL DL syntax. To get around this, the assumption that there
can only be one proposal every turn has to be made. This is, at least at the
start of the game, in compliance with the rules. Every proposal can then be
related to a unique Game_Turn and this makes it possible to identify individual
proposals. This technique can of course be extended to other concepts.

Qualified Concepts: As stated before, there is some kind of judgement about
a Qualified concept. A Voting_Status is the result of a Vote action, the
Pass_Criterion will determine the result of the Vote and qualify the Voting_Status
as being passed (Pass) or rejected (Reject). In the same way, a role of Winner,
played by some person, gets classified under Qualified since it is qualified by
some Winning_Criterion.

The expression of a judgement is more clearly seen in the context of the con-
cept Normatively_Qualified. Some thing gets classified under this concept if
it is allowed or disallowed by some norm. A norm in the context of Nomic is a
Rule and a rule determines what is allowed and disallowed in Nomic. For the
reasoner to determine what actions are allowed, it checks all the concepts (in
most cases, actions) that are allowed by the rules and classifies them under the
concept Allowed, or Disallowed if actions are explicitly forbidden.

In this way a meta rule like Rule 101 can be modeled. It states:

”All players must always abide by all the rules then in effect, in the form in
which they are then in effect...”

If a person that plays the role of player is restricted only to being an actor in
actions that are allowed, then the person cannot do anything that is disallowed
and so will follow all the rules or make the ontology inconsistent.

Time and Game Turn: The concept of Game_Turn was already used to dis-
tinguish between different proposals. It is a subclass of Game_Interval, which

9

is a subclass of Time:Interval. Time:Interval is an LKIF concept that holds
periods of time. A Game_Interval is a period of time during a game and this
could be the entire game, just a single turn or a Circuit_Of_Turns. The lat-
ter concept is a round of turns where each player gets to act. A Player_Turn
relates a Game_Turn to a specific player. The further use of turns however, will
be explained in section 4.

Mental Concept, Game Role, Game Rule and Qualification:
A Game_Role is a subclass of the Role concept. Different roles allow agents to
be involved in different actions. A person playing the Player role is allowed to
do Nomic actions. The Voter role allows a person to vote and is equivalent to
Player as defined in the initial set of Nomic rules. The Winner role is played
by the person that has the most points at the end of the game.

A Game_Proposal is required to perform rule changes - it is a subclass of
Proposition because it does not have to exist in writing. A Game_Rule how-
ever has to be in writing and is therefore a subclass of Expression. Now a
Game_Rule does not have to be in effect, it can be an old rule. A rule that is
in effect, however is a subclass of Legal_Expression and falls in the concept
Rule_In_Effect. This concept is also a subclass of Permission, which is a
subclass of Norm, which is a Qualification. Because rules are norms they can
qualify actions, and the actions allowed by the rules in effect can be classified
as Allowed or Disallowed.

A problem with this approach is that it is not certain if all the rules in effect
are found. In the initial set there are 29 rules, if a rule is valid in the current
turn of the game and qualifies a qualification then it will be classified as a

10

Rule_In_Effect. When only two rules are classified as rules in effect, then this
is considered the initial set. There is no way of checking if the correct number
of rules is found. So it has to be assumed that all the rules that are classified
under Rule_In_Effect are the initial, or current set of rules. This is only true
if all the rules have been asserted to the model correctly and this task is placed
entirely on the user.

3.4 Temporal Aspects of Nomic

One of the challenging problems in modeling Nomic is devising a suitable rep-
resentation of its temporal aspects. Just like any game, Nomic also can be
interpreted in terms of a sequence of moves made by players in consecutive
turns. Apart from this basic similarity, however, Nomic is essentially different
from other games. The terminological knowledge underlying a typical game
is encoded in a fixed set of rules which remain constant throughout the time
of playing. On the contrary, since each move in Nomic is (at least initially)
intended as a change of some of its rules, and so possibly some of the termi-
nological knowledge expressed by them, an adequate representation of Nomic
should account for these changes and allow for determining which part of knowl-
edge applies in particular turns. Consider for example the following fragment
of Nomic’s Initial Set of Rules:

Rule 105

Every player is an eligible voter. [...]

Rule 105 establishes the equivalence relation between concepts Player and
Voter, which could be straightforwardly expressed as a TBox axiom in the
Nomic’s ontology:

(R105) Voter ≡ Player

However, in the course of a game, a group might want to amend Rule 105, for
instance into:

11

Rule 105*

Every player is an eligible voter, except when it is his turn. [...]

As a result axiom (R105) is no longer valid and the relation between the two
concepts should rather be expressed as:

(R105*) Voter ≡ Player and TR

where TR is the additional restriction. Clearly, denotation of Voter changes due
to the amendment, enforcing a revision in the underlying ontology. Taking a
simple update approach to modeling Nomic, which would require revising the
ontology every time a change occurs, though intuitively correct, would neverthe-
less be not satisfying if one wants to maintain the ability of reasoning over whole
game scenarios, i.e., of determining whether in each turn the game was played
according to the rules that were then in effect. Having this goal in mind we
have adopted a more complex approach to handle the temporal representation
of Nomic, which we describe below.

Proposed Representation

The approach employs a three-layer formalism consisting of time stamps on in-
dividuals and time scopes of concepts, augmented by the focusing role of the
Current_Turn individual.

First of all, we have introduced the class Game_Turn, whose instances com-
prise the basic reference system for all temporal reasoning. Game turns are lin-
early ordered by two LKIF properties time:before and its inverse time:after,
forming a discrete time line.

The time stamping technique, which we applied in our approach, comes down
to establishing links between relevant individuals (these are in fact instances of
the majority of the ontology’s concepts) and game turns, this way marking their
relative positions on the time line and accounting for the sequential character
of the game. For this purpose we use two relations with a range restricted to
Game_Turn:

applicable_from ⊆ owl:Thing × Game_Turn
applicable_to ⊆ owl:Thing × Game_Turn

All concepts whose instances require a temporal reference to the time line are
expected to satisfy the following restriction:

(TSt) (applicable_from exactly 1) and (applicable_to exactly 1)

For the clarity of representation we have used (TSt) as the only necessary and
sufficient condition of the class Time_Stamped, which is asserted as an additional
superclass to all appropriate concepts.

12

The intended common-sense meaning of the applicability relations varies
depending on the types of arguments. The assertion:

applicable_from(instance, game_turn_x)
applicable_to(instance, game_turn_y)

should be paraphrased as:

• instance is in effect starting from game_turn_x until game_turn_y —
whenever the instance is a game rule,

• instance is played starting from game_turn_x until game_turn_y —
when it is a role played by some actor,

• instance takes place in game_turn_x — if the instance is an action, or
some kind of speech act (like expressing a judgment on the result of a
voting or a statement of a rule change proposal) — in general any entity
not extensive in time1.

The relations are to be interpreted as inclusive, i.e. whenever an individual
is applicable_from (or applicable_to) some game turn, then it is applica-
ble also in that turn. Moreover we assume that all assertions will satisfy the
following constraint:

if applicable_from(i, x) and applicable_to(i, y)
then x is time:before y2

Parallel to time stamps on individuals we have introduced time scopes on
those concepts that are amenable to change during the game. This restriction
represents the scope of game turns during which a given piece of terminological
knowledge is valid. Assume for example that the amendment of Rule 105, de-
scribed above, took place with the end of the second turn. We would say that
the definition of Voter based on the axiom (R105) was valid from turn 1 to turn
2, and the other one, specified by (R105*), from turn 3 on.

The general idea of the time scope restriction can be formally expressed as
follows. Let TSc be a time scope of some concept defined as:

TSc ≡ ((time:after has Begin_Turn) and (time:before has End_Turn))

1The value of applicable to relation should in this case be always identical to this of
applicable from.

2In order to shorten some of the largely used temporal restrictions, and thus ease their
human readability, we have imposed reflexivity of time:before and time:after properties on
all game turns. An expression x is time:before y is hence interpreted as x is (strictly) before
y or x=y. Whenever it is necessary to refer to instances strictly before or after some point
of time (which is very rare in the model) we can employ timetime:immediatly-before and
time:immediatly-after which are left as irreflexive.

13

where the Begin_Turn and End_Turn mark two limits of the time interval within
which the concept is valid. Given the linear ordering of game turns TSc will
clearly collect all these turns that are placed between Begin_Turn and End_Turn,
including the two. In the next step we can define a time scope restriction which
is imposed on any concept when necessary:

(TScR) (applicable_from some (time:before some TSc))
and (applicable_to some (time:after some TSc))

An individual falls under a concept restricted by (TScR) provided that the
intersection of its applicability interval and the concept’s time scope is not
empty. Some possible cases are depicted below. All instances under the axis
would satisfy the (TScR) of the concept.

Concept

Begin_Turn End_Turn

Instances

Finally, we have employed an auxiliary individual called Current_Turn,
which plays a focusing role in the representation. The goal is to allow the
reasoner for classifying only currently applicable instances and only under those
concepts that represent the valid knowledge of the current turn. In this way the
represented universe of entities indeed reflects the current state of affairs from
ontological, as well as epistemological perspective. Depending on which game
turn we want to investigate, we assert it as a value of the owl:sameAs property
of Current_Turn, thus propagating this change to all restrictions in the ontol-
ogy. Formally, focusing is obtained by augmenting the time scope restrictions
with the Current_Turn individual. First, let’s define a concept TScC as follows:

TScC ≡ {Current_Turn} and TSc
≡ {Current_Turn} and

(time:before has End_Turn) and (time:after has Begin_Turn)

TScC behaves like a function, which returns either the singleton containing the
current turn, if the turn belongs to the time scope TSc of the concept, or the
empty set if the current turn is outside of TSc. This property plays the key
role in the revised form of time scope restriction, which is defined in a similar
manner as before:

(TScCR) (applicable_from some (time:before some TScC))
and (applicable_to some (time:after some TScC))

14

An instance does not get classified under a concept restricted by (TScCR) unless
the intersection of its applicability interval and the concept’s scope is not empty,
and moreover the current turn belongs to this intersection. This is the case only
for two of the highlighted instances in the picture below.

Concept

Begin_Turn End_Turn

Instances

Current_Turn

Notice, that if TScC is empty, then also by reflexivity (time:before \verbsome
TScC)” and (time:after some TScC)) cannot be satisfied by any instances of
Game_Turn, and consequently no time stamped individual can satisfy (TScCR)3.

How the representation functions should become clear in the following ex-
ample. Let Dynamic_Concept be a concept changing over the time of a game.
Let C1, C2 and C3 be its three consecutive variants, defined with the following
necessary and sufficient conditions:

C1 ≡ C and R1

C2 ≡ C and R2

C3 ≡ C and R3

Let’s further restrict the concepts with appropriate time scope conditions by
instantiating Begin_Turn and End_Turn in the (TScCR) restrictions. For ex-
ample:

C1 ≡ C and R1 and TScCR(1,3)
C2 ≡ C and R2 and TScCR(4,7)
C3 ≡ C and R3 and TScCR(8,10)

Now, let I be an instance satisfying restrictions C, R2, R3 and applicable from
turn 2 to turn 9. Depending on which turn is set as the current one, the reasoner
should infer the following types for I:

Current Turn Inferred type
1 none
3 none
5 C2

9 C3

10 none

3In some cases (TScCR) can be significantly simplified, saving some computational effort
for the reasoner, while preserving full functionality. For all classes marked with the suffix
Initial, which represent the original variants of concepts (as given in the Initial Set of rules) it
is possible to reduce (TScCR) only to its first conjunct (applicable from some (time:before

some TScC). In case of all temporarily non-extensive entities (actions, proposals) it is already
sufficient to use just (applicable from some TScC).

15

The final step in the representation, not fully accomplished within our model4,
is to define each concept that varies over time as the union of all its variants
i.e.:

Dynamic_Concept ≡ C1 t C2 t . . . t Cn

where each variant C1 to Cn is restricted by means of its own necessary and
sufficient conditions, including appropriate time scopes (as shown above). The
task of classification of instances, which should be stored in some separate “bin”
concept, has to be left entirely to the reasoner. Running the inference engine
will enforce the denotation of the Dynamic_Concept to correspond to the cur-
rent state of knowledge, or more precisely — to the currently valid meaning of
the concept.

The rationale behind such a formalization is to enable easy cross-referencing
between different parts of taxonomy in the epistemically dynamic setting. Con-
sider again the initial example of this section concerning the change in the
denotation of the concept Voter. By applying the proposed representation it
is possible to refer to Voter in restrictions on other concepts, without having
to update them every time the meaning of Voter changes. For instance, action
Vote defined as:

Vote ≡ Game_Action and (action:actor some (action:Agent
some (plays some Voter)))

can remain unchanged even though the concept of Voter is revised in the course
of a game. Whether a particular action of voting gets classified as a valid
instance of the Vote concept depends on whether its actor plays indeed the role
of a voter in the current understanding of this concept.

3.5 Remarks on Modeling Nomic Scenarios

For a working example of our model we have implemented a short scenario of a
Nomic game to the OWL Nomic ontology (see the Appendix).

The scenario describes a 4-player game, comprising 6 turns, during which
rules are being legally amended, transmuted, repealed and enacted, entailing
respective changes in the terminology. By running the reasoner one can observe
how different individuals get classified depending on their asserted properties on
the one hand, and on the choice of the current turn on the other. For instance, in
turn 2 the _Initial types (which are all still valid) are inferred for the proposal
to amend rule 301, the voting for that proposal and its result, for the actual
action of amending the rule, and further for roles of players and voters. Also
the subset of rules in effect in turn 2 are extracted. Due to the amendment, a
new variant of the concept Voter is introduced whose extension will therefore
differ in the following turns.

4In fact only the concept of Voter is implemented in this way.

16

A few remarks listed below, which follow from our experience in dealing with
the scenario, may serve as practical guidelines or useful reminders for similar
tasks.

Reasoning over incomplete scenarios In the process of modeling an ac-
tual scenario it can be desirable to verify whether all the instances defined in
a newly inputed turn receives the intended classification. Ideally, this step is
supposed to serve for an automated legal assessment of proposed moves in a
real-time game, so that any violations of game rules can be immediately de-
tected. Verification is also recommended for practical reasons, since erroneous
or incomplete assertions may affect the inferences over upcoming turns.

Although the game does not have to be finished at this stage yet, and many
entities are presumably still valid, it is necessary to close all time stamps (for
individuals) and time scopes (for concept variants) for the reasoning to succeed.
Basically the closing is performed by asserting the currently modeled turn as
the turn which all these entities are applicable to. In principle this might be
a tedious procedure requiring numerous updates all over the knowledge base.
To ease it we have introduced an auxiliary individual called Last_Turn. The
individual has to be defined as owl:sameAs the last turn of the game which
has been as far modeled. Last_Turn can be then used as the closing turn in
time stamps and time scopes of all relevant entities. As a result, moving to
the consecutive turn requires only a single update (viz. that of the owl:sameAs
property of the Last_Turn) in order to extend applicability and validity of all
the required individuals and concepts. The change is propagated to the whole
ontology at once, saving the effort of updating every single individual and con-
cept separately.

In practice we have consistently used Last_Turn as a closing turn every time
a new (temporarily extensive) individual or concept variant is introduced in the
game and when the end of its applicability interval is still not determined or
simply goes beyond what has been as far modeled.

Concept revision When encountering a concept revision, one should follow
the general modeling approach and define a new concept variant, placed as a
sibling of the older one in the taxonomic tree. The old time scope has to be
closed on the current turn, whereas the new one has to be opened starting from
the following turn and ending in the Last_Turn.

Time stamping of rules Initially, whenever a rule change is applied, the
rule that is the subject to change (except for the case of enactment) becomes
applicable to the turn in which the change takes place, and a new, resulting rule
is introduced (except for repeal) with the applicability interval starting from
the following turn and ending in the Last_Turn.

17

4 Summary

The goal of the project was to explore the possibility of using LKIF-Core ontol-
ogy for the task of modeling a piece of legislation. The object of modeling was
the Initial Set of rules of Peter Suber’s Nomic game — a game of an uncommon
self-modifying character.

The resulting model, an OWL ontology, encompasses the normative knowl-
edge conveyed by relatively small, but as we believe, the most essential and
representative subset of Nomic’s rules. The focus is predominantly on concepts
necessary for expressing rule changes, i.e. actual actions of conducting a change,
along with all required prerequisites, such as rules, players, proposals, actions of
voting on proposals, etc. Within that scope, though quite limited, Nomic seems
to reveal the most affinity with some typical legislative acts, and thus may serve
as a simple but good example for modeling in LKIF-Core.

Due to the simplistic character of Nomic our experience of using LKIF-
Core was inevitably restricted, and so are our conclusions following from it.
In fact, there was no need to use the vast majority of LKIF concepts or re-
lations, or even entire modules such as: top:Occurence, expression:Medium,
top:Physical_Concept or Modification. Nevertheless, to the extent that le-
gal terminology was indeed employed, LKIF-core turned out to be a very useful
tool for the task, both as a ready upper-level taxonomical structure, allowing
for faster and easier organization of terminological knowledge extracted from
Nomic, but also as a heuristic guide, providing valuable hints on what concepts
and relations should be searched for in the text of legislation. Especially the
second role, which is not perhaps the primary objective of LKIF, should not
be underestimated in cases were ontology developers differ in or simply lack
sufficient legal background.

What we have found as a main limitation for the task (and as we think in
principle for any task of modeling legislation) is the trade-off between fidelity
and complexity of the representation. Building a well-grained OWL model of a
legislation that would preserve the intended interpretation of natural language
expressions quickly leads to blow-up in the number of used concepts and in the
size and complexity of concept restrictions. As a consequence, human readabil-
ity of the representation is severely affected and, what is more serious, the model
becomes computationally intractable. Hence, the ideal of establishing a one to
one correspondence between the law and its formal model based on LKIF-Core,
and generally on OWL technology — a clear prerequisite for providing exten-
sive and reliable automated legal assessment services — seems in practice to be
a hardly achievable goal. LKIF-Core in itself is already a relatively complex
structure, which considerably slows down the reasoning process, being a prac-
tical obstacle in development of the model. For that reason we left out some
of unnecessary modules and branches of LKIF taxonomy, embedding the model
in the subset of LKIF-Core, in the report referred to as LKIF-Skeleton. Select-

18

ing a subset of LKIF instead of the entire ontology as the basis for modeling,
though always project-oriented and requiring some caution, might be in general
suggested as a convenient strategy for effective usage of LKIF-Core.

Apart from representing the terminological knowledge of the initial state of
game, we have also proposed a methodology of handling the changes in knowl-
edge that can take place during the game. Our approach of representing the
temporal aspects of Nomic allows for keeping track of all epistemic states that
characterize consecutive turns of the game. By employing the focusing role of
the auxiliary Current_Turn individual, we are able to reason over any selected
turn of the game, verifying whether the game was played according to rules (and
so according to terminological knowledge) which were in effect in that turn. In
this sense it is possible, to some limited extent, to use the model for automated
legal assessment of moves in the Nomic game.

Finally, to relate our work to another research on formalizing Nomic we shall
briefly refer to the paper of G. Vreeswijk, [2]. The perspective on Nomic taken
in our project is quite different from that considered by Vreeswijk. Whereas
Vreeswijk focuses on the analysis of the criteria and general dynamics of al-
lowing/forcing shifts between following epistemic states of the game, our major
concern is to actually model the (normative) knowledge characterizing these
states. Unlike Vreeswijk we have been not interested in grasping formal aspects
of the game’s rationality, but rather on representing deontic possibilities that are
present on each stage of the game. An interesting overlap, however, especially
from Vreeswijk perspective, would be to examine how particular changes affect
the space of deontic possibilities, leading the game to stable or unstable states.
In one extreme case a game might reach the state of ultimate liberation (in our
representation this would correspond to the situation when there are no prop-
erty restrictions on currently valid concepts) in the ether the “dead end” where
nothing is allowed anymore (when currently valid concepts are inconsistent).

References

[1] Boer, Alexander (Eds), Deliverable 1.4, OWL Ontology of Basic Legal
Concepts (LKIF-Core), ESTRELLA Project, 2007.

[2] Vreeswijk, Gerard A. W., “Formalizing Nomic: working on a theory of
communication with modifiable rules of procedure” in: Technical report CS
95-02, Vakgroep Informatica (FdAW), Rijksuniversiteit Limburg, Maas-
tricht, The Netherlands. Presented at the Fourth International Symposium
on Cognitive Science, Donostia — San Sebastian, May 3-6, 1995.

19

Appendix

A Sample Scenario of the Nomic Game

There are 4 players: Abdo, Ji, Marc, Szymon. The following actions are taken
in the respective turns of the game.

All information about scoring typed in italics is not actually handled by the
model.

Turn 1: Player Marc proposes proposal 301, which states: transmute immutable
rule 105 into a mutable rule. The proposal is unanimously accepted by all
players. The transmuted rule receives number 301. Marc scores 2 points.

Turn 2: Player Ji proposes proposal 302, which states: amend rule 301 into:
“A player is an eligible voter, if it is his turn or one of the two previous
turns was his”. The proposal is unanimously accepted by all players. The
amended rule receives the number 302. Ji scores 6 points.

Turn 3: Player Szymon proposes proposal 303, which states: repeal rule 203.
The proposal is unanimously accepted by all eligible voters. Szymon scores
5 points.

Turn 4: Player Abdo proposes proposal 304, which states: amend rule 208
into: “The winner is the player with the least points after two circuits of
turns”. The proposal is rejected. Abdo loses 5 points.

Turn 5: Player Marc proposes proposal 305, which states: enact a new rule:
“The game is over with the beginning of the 6-th turn”. The proposal is
unanimously accepted by all eligible voters. The rule receives the number
305. Marc scores 3 points.

Turn 6: Player Ji, having scored maximum number of points, is the winner of
the game.

20

