
DeepSleep
Shashank Rao ⋆⨢, Abdallah El Ali ⋆, Pablo Cesar ⋆⨢

⋆ Centrum Wiskunde & Informatica, ⨢ TU Delft

Abdallah El Ali
abdallah.elali@gmail.com
www.abdoelali.com

Shashank Rao, Abdallah El Ali, and Pablo Cesar. DeepSleep: A Ballistocardiographic-based 
Deep Learning Approach for Classifying Sleep Stages. In UbiComp 2019.

A Ballistocardiographic-based Deep Learning Approach for 
Classifying Sleep Stages

conv block

maxpool /2

weights

conv block

conv block

weights

weights

shortcut connection

maxpool /2

x8

Input Signal
(#batches, 7500, 1)

filter_length = 100
strides = 4
n_filters = 64

GlobalAvgPooling 

LSTM LSTM LSTM LSTM 

bidirectional-LSTM x3

128 units

Dense, 512 

batch-norm 

relu 

residual connection

Dense, 4 Softmax layer

Wake REM Deep Light

representation layer

sequential layer

- PSG considered most accurate method for diagnosing sleep-related problems
- However, it is expensive, complex, time-consuming, and uncomfortable for users
- We propose a transfer learning approach using BCG data 
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- Two Nvidia GTX 1080 Ti 
GPU clusters
- Random weight 
initialization 
- Random oversampling to 
balance data
- Learning rate = 1e-3
- Adam optimizer
- 80-20% training-test split
- pre-train: 150 epochs

DeepSleep 
architecture

[1] NIMHANS - National Institute of Mental Health and Sciences

How can a sleep classification system be modelled using Ballistocardiographic (BCG) 
sensor data, and achieve a performance comparable with Polysomnography (PSG)?

▸
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Subject ID Duration 1st Record Date SATED 1 2nd Record Date SATED 2 Mean SATED NIMHANS DeepSleep
Subject_06_SA 7h 30min 6/8/2018 82 7/8/2018 84 83 86 80
Subject_07_SA 8h 7/8/2018 76 8/8/2018 77 76.5 79 72
Subject_10_SA 6h 14min 10/8/2018 74 11/8/2018 78 76 80 84
Subject_12_SA 6h 30min 12/8/2018 87 13/8/2018 84 85.5 83 80
Subject_14_SA 7h 10min 14/8/2018 86 14/8/2018 83 84.5 84 76
Subject_15_SA 6h 5min 15/8/2018 84 16/8/2018 85 84.5 80 79
Subject_16_SA 6h 50min 16/8/2018 82 17/8/2018 84 83 80 78
Subject_17_SA 6h 10min 17/8/2018 77 18/8/2018 82 79.5 82 84
Subject_20_SA 5h 55min 20/82018 64 21/8/2018 71 67.5 70 80
Subject_21_SA 6h 42min 21/8/2018 70 22/8/2018 73 71.5 70 75
Subject_22_SA 7h 24min 22/8/2018 92 23/8/2018 90 91 88 90
Subject_24_SA 7h 5min 24/8/2018 81 25/8/2018 81 81 83 88
Subject_25_SA 7h 10min 25/8/2018 79 26/8/2018 79 79 75 84
Subject_26_SA 6h 45min 26/8/2018 90 27/8/2018 92 91 92 84
Subject_30_SA 7h 5min 30/8/2018 88 31/08/2018 90 89 92 86

Table 9. SATED scores: Perceived sleep quality scores reported by users compared against the scores calculated by the PSG
and the DeepSleep model

problems posed by limited or unlabelled data [81]. To test this hypothesis, we have also pre-trained our model
using the MIT-BIH ’s ECG data as its size is signi�cantly larger than the other datasets. Later, we tested if our
model, pre-trained using the MIT-BIH ECG, is able to classify stages using the Dozee BCG data. Table 8 shows the
performance of the DeepSleep model on the Dozee BCG, Dozee ECG and the Fitbit-PPG dataset, when pre-trained
using the MIT-BIT ECG dataset.

5.5 Sleep quality measurement
Table 9 shows the perceived sleep quality scores reported by the users, compared against the objective scores
calculated by the PSG study and by our model. The formula used by the sleep experts [75] to calculate sleep
quality is:

SQ =
REM (min) + NREM (min) � Awakening (min)

Total Sleep (min)
(6)

We used the Pearson product-moment correlation test to compute the correlation coe�cient between the mean
SATED scores and the scores calculated by the DeepSleep model. With a coe�cient of r = 0.43, it suggests that
there is a positive correlation between the perceived scores and the objective scores calculated by our model. The
objective scores of our model has only a medium positive correlation with the objective scores of PSG (r = 0.48),
suggesting that the objective scores underestimate or do not account for some of the perceived factors. Factors
like time to sleep, circadian rhythm, time taken to sleep, habitual waking time and mean of weekly sleeping times
have been used in objective sleep quality measurement by some of the studies and sleep clinics. These factors
have been shown to capture some of the dimensions in perceived sleep measurement [48, 82]. However, we use
the simple formulation of objective sleep quality measurement as it is widely used by sleep clinics and also due
to the limitation of our user study.
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▸

SATED questionnaire for perceived sleep quality

- SATED: Satisfaction, Alertness, Timing, Efficiency, 
Duration
- 16 subjects
- Scores recorded 1hr and 24 hr after PSG recording

▸

Objective sleep quality

▸

Fine-tuning accuracy and loss 
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Study Year Sensor type #Features Classi�er Classes Accuracy
Längkvist et al. [50] 2012 EEG, EOG, EMG 1 DBN, HMM W, REM, NREM, L 72%
Samy et al. [72] 2014 BCG 6 KNN, SVM, Naive-Bayes W, L, REM, Deep (NREM) 72%
Supratak et al. [77] 2017 EEG 1 1D-CNN + LSTM W, REM, NREM, L 86%
Dong et al. [24] 2018 EEG, EOG 1 LSTM W, REM, NREM, L 86%
Chambon et al. [13] 2018 EEG, EOG, EMG 1 1D-CNN W, REN, NREM, L 87%
DeepSleep (proposed) 2018 BCG 1 1D-CNN + bi-LSTM W, L, REM, Deep (NREM) 74%

Table 5. Performance comparison between DeepSleep model and prior works that perform 4-class classification.

Study Year Sensor type #Features Classi�er Classes Accuracy
Kortelainen et al. [46] 2010 BCG (BCG) 5 HMM, Autoregression W, REM, Deep, L 64%
Kortelainen et al. [46] 2010 BCG (BCG) 5 HMM, Autoregression REM, Deep (NREM) 70% (74%)
Fonseca et al. [28] 2015 BCG (ECG, RIP) 142 LDA W, REM, Deep, L 63% (69%)

Längkvist et al. [50] 2012 BCG (EEG, EOG, EMG) 1 DBN, HMM W, REM, Deep, L 68% (72%)
Supratak et al. [77] 2017 BCG (EEG) 1 1D-CNN + LSTM W, REM, Deep, L 70% (86%)
Dong et al. [24] 2018 BCG (EEG, EOG) 1 LSTM W, REM, Deep, L 69% (86%)
Chambon et al. [13] 2018 BCG (EEG, EOG, EMG) 1 1D-CNN W, REM, Deep, L 71% (87%)

DeepSleep (proposed) 2018 BCG 1 1D-CNN + bi-LSTM W, REM, Deep, L 74%
Table 6. Comparison of di�erent model architectures on the Dozee BCG dataset. These models have been reproduced in this
work to make this comparison. The original sensor types used in these models are mentioned in the brackets. The accuracy
scores stated in brackets for the baseline models denote the accuracies as reported in their original works.

Dataset Sensor type #Features #Recordings Classi�er Classes Accuracy
Dozee BCG BCG 1 51 1D-CNN + bi-LSTM W, L, REM, Deep (NREM) 74%
Dozee ECG ECG 1 51 1D-CNN + bi-LSTM W, L, REM, Deep (NREM) 77%
MIT-BIH ECG 1 80 1D-CNN + bi-LSTM W, L, REM, Deep (NREM) 82%
Fitbit-PPG PPG 1 12 1D-CNN + bi-LSTM W, L, REM, Deep (NREM) 63%

Table 7. Performance of DeepSleep model on di�erent datasets and sensor types

Dataset Sensor type #Features #Recordings Classi�er Classes Accuracy
MIT-BIH ECG 1 80 1D-CNN + bi-LSTM W, L, REM, Deep (NREM) 86%
Dozee BCG BCG 1 51 1D-CNN + bi-LSTM W, L, REM, Deep (NREM) 80%
Dozee ECG ECG 1 51 1D-CNN + bi-LSTM W, L, REM, Deep (NREM) 84%
Fitbit-PPG PPG 1 12 1D-CNN + bi-LSTM W, L, REM, Deep (NREM) 67%

Table 8. DeepSleep model’s performance on di�erent datasets when pre-trained usingMIT-BIH ECG.

5.4 Transfer Learning
Table 7 shows the overall performance of the DeepSleep model on the di�erent datasets. It can be seen that the
DeepSleep model performs the best on the MIT-BIH dataset. This can be attributed to the fact that around 80
full-night recordings containing high resolution of the ECG data is used for inference testing. The low signal-to-
noise ratio of the ECG signal has helped the model to perform better. This is evident from the slightly better
scores using the Dozee ECG data. Also, both the Dozee ECG and the MIT-BIH contain almost equal distribution
of REM, Deep and Wake classes unlike the Dozee BCG data. Hence, there is a lower e�ect of class imbalance
when using these datasets. According to Torrey and Shavlik, transfer learning could also be used to o�set the
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Sleep classification performance

- Model identifies onset and period of sleep 
stages
- Differentiates between REM & Deep
- Avg. F1-score: 74%
- Avg. F1-score: 82% on ECG data 
(transfer learning)
- Positive correlation with PSG (r = 0.48) 
and SATED (r = 0.43), whereas r=0.54 
between SATED and PSG

Conclusion
- Leave-one-out cross-validation
- Compare with non-NN approaches
- Better oversampling (e.g., 
Seq2seq)
- Multimodal learning

Future work

- 51 recordings, 25 subjects
- Training = 41; Validation = 7; Test = 3
- Ground truth annotated by 2 doctors from NIMHANS [1]
- Cohen’s kappa, k = 0.80 

Dataset comparisons

▸
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Fitbit-PPG PPG 1 12 1D-CNN + bi-LSTM W, L, REM, Deep (NREM) 67%
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5.4 Transfer Learning
Table 7 shows the overall performance of the DeepSleep model on the di�erent datasets. It can be seen that the
DeepSleep model performs the best on the MIT-BIH dataset. This can be attributed to the fact that around 80
full-night recordings containing high resolution of the ECG data is used for inference testing. The low signal-to-
noise ratio of the ECG signal has helped the model to perform better. This is evident from the slightly better
scores using the Dozee ECG data. Also, both the Dozee ECG and the MIT-BIH contain almost equal distribution
of REM, Deep and Wake classes unlike the Dozee BCG data. Hence, there is a lower e�ect of class imbalance
when using these datasets. According to Torrey and Shavlik, transfer learning could also be used to o�set the
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