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How can a sleep classification system be modelled using Ballistocardiographic (BCG)
sensor data, and achieve a performance comparable with Polysomnography (PSG)?

Collecting BCG-
based heart
sensor signals

- PSG considered most accurate method for diagnosing sleep-related problems
- However, it Is expensive, complex, time-consuming, and uncomfortable for users
- We propose a transfer learning approach using BCG data
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- 51 recordings, 25 subjects
- Training = 41; Validation = 7; Test = 3
- Ground truth annotated by 2 doctors from NIMHANS [1]

- Cohen’s kappa, k =0.80

Class distributions in different datasets
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SATED questionnaire for perceived sleep quality

Measuring

] Duration
sleep quality

- 16 subjects

- SATED: Satisfaction, Alertness, Timing, Efficiency,

- Scores recorded 1hr and 24 hr after PSG recording

Objective sleep quality
REM (min) + NREM (min) — Awakening (min)
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Fine-tuning accuracy and loss
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Dataset comparisons

Study Year Sensor type #Features Classifier Classes Accuracy
Langkvist et al. [50] 2012 EEG,EOG,EMG 1 DBN, HMM W, REM, NREM, L 72%
Samy et al. [72] 2014  BCG 6 KNN, SVM, Naive-Bayes W, L, REM, Deep (NREM)  72%
Supratak et al. [77] 2017 EEG 1 1D-CNN + LSTM W, REM, NREM, L 86%
Dong et al. [24] 2018  EEG, EOG 1 LSTM W, REM, NREM, L 86%
Chambon et al. [13] 2018  EEG, EOG,EMG 1 1D-CNN W, REN, NREM, L 87%
DeepSleep (proposed) 2018 BCG 1 1D-CNN + bi-LSTM W, L, REM, Deep (NREM) 74%

Performance comparison between DeepSleep model and prior works that perform 4-class classification.

Dataset Sensor type #Features #Recordings Accuracy
Dozee BCG BCG 1 51 74%
Dozee ECG ECG 1 51 77%
MIT-BIH ECG 1 80 82%
Fitbit-PPG  PPG 1 12 63%

Performance of DeepSleep model on different datasets and sensor types

[1] NIMHANS - National Institute of Mental Health and Sciences
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- Two Nvidia GTX 1080 Ti
GPU clusters

- Random weight
initialization

- Random oversampling to
balance data
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V7 - Adam optimizer

- 80-20% training-test split
- pre-train: 150 epochs
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Sleep classification performance

Softmax layer
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Conclusion

- Model identifies onset and period of sleep
stages

- Differentiates between REM & Deep

- Avg. F1-score: 74%

- Avg. F1-score: 82% on ECG data
(transfer learning)

- Positive correlation with PSG (r = 0.48)
and SATED (r = 0.43), whereas r=0.54
between SATED and PSG

Future work

- Leave-one-out cross-validation

- Compare with non-NN approaches
- Better oversampling (e.qg.,
Seg2seq)

- Multimodal learning
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