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ABSTRACT

Current techniques for tracking sleep are either obtrusive
(Polysomnography) or low in accuracy (wearables). In this
early work, we model a sleep classification system using an
unobtrusive Ballistocardiographic (BCG)-based heart sen-
sor signal collected from a commercially available pressure-
sensitive sensor sheet. We present DeepSleep, a hybrid deep
neural network architecture comprising of CNN and LSTM
layers. We further employed a 2-phase training strategy to
build a pre-trained model and to tackle the limited dataset
size. Our model results in a classification accuracy of 74%,
82%, 77% and 63% using Dozee BCG, MIT-BIH’s ECG, Dozee’s
ECG and Fitbit’s PPG datasets, respectively. Furthermore,
our model shows a positive correlation (r = 0.43) with the
SATED perceived sleep quality scores. We show that BCG
signals are effective for long-term sleep monitoring, but cur-
rently not suitable for medical diagnostic purposes.
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Figure 1: Dozee sensor-sheet and its usage.

1 INTRODUCTION

Sleep-related disorders such as sleep deprivation [6] and
sleep apnea can be studied and diagnosed, and interven-
tions can occur using ubiquitous sensing technologies [1].
Sleep clinics typically use Polysomnography (PSG), a test
conducted to study sleep and to diagnose different forms of
sleep disorders [4]. To date, PSG is considered as the most
accurate method for diagnosing sleep-related problems and
considered the gold standard in clinical sleep medicine. How-
ever, it suffers from the fact that it is expensive, complex,
time-consuming, and uncomfortable for the users [4]. In this
early work, we aim to model a sleep classification system us-
ing an unobtrusive Ballistocardiographic (BCG)-based heart
sensor signal collected from Dozee! (Fig. 1), a commercially
available non-contact, unobtrusive pressure-sensitive sensor
sheet. Here, we ask: How can a sleep classification system be
modelled using BCG sensor data, in order to achieve a perfor-
mance comparable with PSG?

2 METHODS

We aim to classify four sleep stages [11]: (1) Wake state (2)
Rapid Eye Movement (REM) (3) Light sleep, and (4) Deep
sleep. This study is based on four datasets (distribution shown
in Table 1): Dozee’s BCG dataset, Dozee’s ECG data, the MIT-
BIH Polysomnographic dataset [7] and the PPG-based Fitbit
data [10] provided by Fitabase®. Our model is trained using
the Dozee’s BCG dataset while the Dozee ECG, MIT-BIH PSG
data and the Fitbit’s PPG data are used for transfer learning.

https://www.dozee.io
ZFitabase: https://www.fitabase.com/research-library/
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Table 1: Overview of the class representation in each of the dataset used in this work. The "Number of Recordings" indicates
the total number of data that we have for that particular dataset. The number in parantheses corresponds to the number of

unique subjects from which the recordings were obtained.

Dataset Sensor type No. of Recordings Sample rate (Hz) Wake REM Deep Light
Dozee BCG BCG 51 (25) 250 8% 22% 25% 45%
Dozee ECG ECG 51 (25) 250 8% 22% 25% 45%
MIT-BIH PSG-ECG 80 (16) 250 15% 25% 30% 30%
Fitabase-Fitbit PPG 12 (4) 120 20% 20% 15% 45%
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Figure 2: DeepSleep model architecture with residual connec-
tions.

To study the effect of sleep on our cardiac rhythm, Heart-rate
Variability (HRV) features are extracted [11]. For the Dozee
BCG dataset, we had 51 recordings across 25 subjects, where
ground truth data was annotated by 2 doctors (Cohen’s k =
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Figure 3: Pre-training phase.

0.80) from NIMHANS (National Institute of Mental Health
and Sciences) in Bangalore, India.

We present DeepSleep, a hybrid deep neural network model
that can automatically extract heart-related features and
learn the time-dependent nature of sleep patterns for clas-
sification (Fig. 2). We run pre-training and subsequently
fine-tuning to help tackle the limited amount of labelled
sensor data. This training strategy enables us to test the pre-
trained model’s classification ability on ECG and PPG sensor
data. A combination of stacks of 1-D convolutional networks
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Table 2: Performance comparison between DeepSleep model and prior works that perform 4-class classification.

Study Year Sensor type #Features Classifier Classes Accuracy
Langkvist et al. [9] 2012 EEG, EOG,EMG 1 DBN, HMM W, REM, NREM, L 72%
Samy et al. [12] 2014 BCG 6 KNN, SVM, Naive-Bayes W, L, REM, Deep (NREM) 72%
Supratak et al. [13] 2017 EEG 1 1D-CNN + LSTM W, REM, NREM, L 86%
Dong et al. [5] 2018 EEG, EOG 1 LSTM W, REM, NREM, L 86%
Chambon et al. [3] 2018 EEG,EOG,EMG 1 1D-CNN W, REN, NREM, L 87%
DeepSleep (proposed) 2019 BCG 1 1D-CNN + bi-LSTM W, L, REM, Deep (NREM) 74%
Table 3: SATED framework questionnaire [2] used for col-
20 lecting perceived sleep quality scores. Total for all items
154 _ \T/Z“;'a':i:’f;s ranges from 0 (poor sleep health) to 10 (good sleep health).
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Figure 4: Fine-tuning phase.

(1D-CNNs) and Bidirectional Long-Short Term Memory (bi-
LSTM) [8] layers are incorporated in the model design to
enable unsupervised feature learning and sequential learn-
ing, respectively. We run our experiments using two NVIDIA
GTX 1080Ti GPU clusters, random weight initialization, ran-
dom oversampling to balance data, learning rate of 1e-3, use
Adam optimizer, and perform an 80-20% training-test split,
with pre-train and fine-tune steps (shown in Fig. 3 and Fig.
4, respectively) of 150 epochs each.

Lastly, we test how well the sleep quality scores from our
DeepSleep model correlate with the perceived quality score

Rarely/ Some-
Never times

(0) (1) @)

Usually/
Always

Satisfaction | Are you satisfied with
your sleep?

Do you stay awake all
day without dozing?
Are you asleep (or try-
ing to sleep) between
2:00 a.m. and 4:00 a.m.?
Do you spend less than
30 minutes awake at
night? (This includes
the time it takes to fall
asleep and awakenings
from sleep.)

Do you sleep between 6
and 8 hours per day?

Alertness

Timing

Efficiency

Duration

(1hr and 24 hr after PSG recording) as reported by 16 different
users (N=16), using the 5-item self-rated sleep quality ques-
tionnaire called SATED [2] (Satisfaction, Alertness, Timing,
Efficiency, Duration). The SATED questionnaire is shown
in Table 3. Since the SATED dimensions include questions
about alertness and satisfiability, we instructed the subjects
to fill in the same questionnaire again after a gap of one day
from their study. This way we attempted to collect better
alertness scores which may not be perceived immediately
after waking up. We used the mean SATED scores to test its
correlation with the PSG’s and DeepSleep’s sleep score.

Table 4: Classification performance (W, L, REM, Deep
(NREM)) of DeepSleep model on different datasets.

Dataset Sensor type #Recordings Accuracy
Dozee BCG BCG 51 74%
Dozee ECG ECG 51 77%
MIT-BIHECG ECG 80 82%
Fitbit-PPG PPG 12 63%
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Table 5: Precision, Recall and F1-score of DeepSleep model.

Precision Recall Fl-score Samples

Deep 0.74 0.76 0.75 236
Light 0.79 0.84 0.82 497
REM 0.77 0.64 0.71 193
Wake 0.59 0.70 0.64 98
avg/total 0.73 0.74 0.73 1024

3 RESULTS & FUTURE WORK

Our DeepSleep model has a mean accuracy of 74% using
BCG signals only (Table 2), with confusion matrix shown in
Fig. 5. Precision, recall and F1-scores are shown in Table 5.
We further employed a 2-phase training strategy to build a
pre-trained model and to tackle the limited dataset size. With
a classification accuracy (Table 4) of 82%, 77% and 63% using
MIT-BIH’s ECG, Dozee’s ECG and Fitbit’s PPG datasets, we
find lowest performance on Fitbit-PPG (likely due to lower
number of recordings). In our transfer learning setting on
ECG data, we reach an accuracy of 82%, likely due to shape
similarities of BCG and ECG signals.
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Figure 5: Classification accuracy confusion matrix for our
DeepSleep model.

Finally, with a correlation coefficient of r = 0.43, our
model shows a positive correlation with the SATED ques-
tionnaire perceived sleep quality scores, by contrast to a
coefficient of r = 0.48 with PSG, and r = 0.54 between
SATED and PSG. Although our current proposed model’s
performance is not yet comparable to PSG, we show that
heart rate signals alone are an effective means for long-term
sleep monitoring, but currently not suitable for medical diag-
nostic purposes. Our next steps are to validate our approach
using leave-one-subject out cross-validation (despite testing
on different sets of subjects), and to test our model against
non-Artificial Neural Network approaches. Finally, we aim
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at experimenting with better oversampling techniques, such
as Seq2Seq autoencoders [14] to encode a signal length of 30
seconds and create a new synthetic sequence of the same sig-
nal length. The generative property of the Seq2Seq network
could retain a high amount of correlation and temporal order
of the original sequence when generating a new sequence.
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